Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Comet dust brought back to Earth: paving the way for Rosetta

13.01.2006


Scientists around the world eagerly await the arrival of sample particles from Comet Wild 2, which are being brought back to Earth by the US Stardust spacecraft on 15 January this year.



The NASA Stardust mission was launched over seven years ago and has travelled several thousand millions of kilometres in deep space, chasing Comet Wild 2.

In January 2004, the spacecraft encountered the comet to collect samples of particles ejected from its nucleus.


This was achieved with a sample canister containing cells filled with ‘Aerogel’, an extremely lightweight, porous material based on silicon technology, ideal for slowing down the fast-moving dust particles and collecting them. These particles are moving at ‘hypervelocities’, i.e. speeds of up to seven kilometres per second.

During the encounter with Wild 2, the canister was exposed to the cometary particles and then retracted inside the spacecraft and stored in its Sample Return Capsule. The spacecraft then began its two-year journey back to Earth to return carrying its precious cargo. Also a sample of interstellar dust was collected during the journey.

When we want to understand the origin and evolution of the Solar System, comets are among the most informative of its inhabitants. They formed four and a half thousand million years ago and have remained almost unchanged since then.

Studying them can provide important clues about the origin of the material out of which the Solar System formed, and could even help in understanding the origins of life on Earth.

"Missions like Stardust provide not only valuable data by the first-ever study in terrestrial laboratories of particles ejected from a known comet and collected in the very close vicinity to it," said Gerhard Schwehm, ESA’s Rosetta Project Scientist.

"Results from such missions, which include ESA’s Giotto spacecraft to Comet Halley in 1986, are also very important for the preparation and fine-tuning of the scientific investigations on future cometary missions, such as the European comet-chaser Rosetta."

Launched in 2004, Rosetta is now travelling on a long route around the Sun to rendezvous with Comet Churyumov-Gerasimenko in 2014 and deliver a lander onto its surface.

With Stardust, scientists will have access to information about particles collected from the ‘coma’, the halo of dust and gas surrounding the comet tail.

"These tiny particles, mostly micrometres in size, will be cut into even finer pieces and will be analysed with the very best instruments and at the highest level of detail for Earth-based labs," continued Schwehm.

"With Rosetta, we will study the comet in situ in all its aspects – the tail, the coma and even the surface, the comet ‘mantle’. Instead of bringing the comet material to our laboratories, Rosetta will take the ‘laboratory’ to the comet.

"In particular, our sophisticated suite of instruments will allow us not only to fully characterise the comet’s particle content – chemical composition and other physical properties – but also the volatile content. This means we don’t potentially lose any of these properties during a transport back to Earth," he adds.

"However, thanks to Stardust, the analysis of coma particles on Earth will provide the whole scientific community with an unprecedented close-up view. For instance, the analysis of the ‘isotopic ratio’ of the elements in the dust grains (finding the percentage and the nature of ‘decayed’ atoms in the dust) gives important information about where and how this material was formed," concluded Schwehm.

Michel van Baal | alfa
Further information:
http://www.esa.int/SPECIALS/Rosetta/SEM7G5MZCIE_0.html

More articles from Physics and Astronomy:

nachricht Structured light and nanomaterials open new ways to tailor light at the nanoscale
23.04.2018 | Academy of Finland

nachricht On the shape of the 'petal' for the dissipation curve
23.04.2018 | Lobachevsky University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>