Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient parts of a comet to land in Open University lab

12.01.2006


Before the end of January particles from a distant comet will be delivered to The Open University and research will begin on what could be keys to the origin of life in the universe.



NASA’s Stardust mission is returning to Earth early January 15th after a three billion-mile (4.6 billion-km) trip to collect interstellar comet dust from Comet Wild 2 (pronounced vilt after the Swiss man who discovered it). During a brief encounter with Comet Wild 2 nearly two years ago, Stardust captured thousands of particles as it came within 146 miles (240 km) of the comet, surviving the high speed impact of millions of dust particles and small rocks up to nearly half a centimetre across. Stardust’s tennis racket shaped collector captured thousands of these comet particles into cells filled with Aerogel-- a substance so light it almost floats in air.

The samples are returning to Earth in a capsule that will parachute into the Utah desert, the first sample-return mission to a comet. The first samples will be made available to a small number of teams, including The Open University’s Planetary and Space Science Research Institute (PSSRI), for preliminary analysis before their release to the wider scientific community.


A team from The Open University including Dr Simon Green, Dr Ian Franchi, Dr John Bridges and Professors Tony McDonnell and Monica Grady will be among the world’s first scientists to analyse the samples that contain the fundamental building blocks of our Solar System. Analysis may be able to determine not only the origins of the Solar System from these samples, but also possibly the origins of life.

“Stardust could provide a new window into the distant past,” said Dr Green. “Comets are made of ice and are very cold and have been very cold since they were formed, so they haven’t been changed since the beginning of the formation of the Solar System. So we have almost a little time capsule of what things were like 4.5 billion years ago. We can also learn about processes in stars and interstellar dust clouds in which the dust grains originally formed. They may also reveal information about the origins of life since comets are a source of organic material that may have formed the original building blocks of life-forming molecules."

PSSRI involvement in this mission covers a number of areas:

  • The design and provision of sensors for the Dust Flux Monitor instrument and measurement of dust impacts at the Wild 2 encounter
  • Members of the dust coma modelling team li>Development of sample extraction and characterisation techniques in Aerogel.
  • Members of the Preliminary Examination Teams for sample analysis.

Professor Keith Mason, Chief Executive Officer of the Particle Physics and Astronomy Research Council (PPARC), which part funded the UK involvement in Stardust, said, “The return of the samples from Stardust is a truly remarkable feat. It will be the first time in the history of space exploration that samples from a comet will be returned to Earth. It is particularly exciting that the Open University team will be one of the first to analyse the samples – helping to further our understanding of the origins of the Solar System.”

Louis De La Foret | alfa
Further information:
http://www3.open.ac.uk/media/fullstory.aspx?id=8100

More articles from Physics and Astronomy:

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

nachricht Tune your radio: galaxies sing while forming stars
21.02.2017 | Max-Planck-Institut für Radioastronomie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>