Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient parts of a comet to land in Open University lab

12.01.2006


Before the end of January particles from a distant comet will be delivered to The Open University and research will begin on what could be keys to the origin of life in the universe.



NASA’s Stardust mission is returning to Earth early January 15th after a three billion-mile (4.6 billion-km) trip to collect interstellar comet dust from Comet Wild 2 (pronounced vilt after the Swiss man who discovered it). During a brief encounter with Comet Wild 2 nearly two years ago, Stardust captured thousands of particles as it came within 146 miles (240 km) of the comet, surviving the high speed impact of millions of dust particles and small rocks up to nearly half a centimetre across. Stardust’s tennis racket shaped collector captured thousands of these comet particles into cells filled with Aerogel-- a substance so light it almost floats in air.

The samples are returning to Earth in a capsule that will parachute into the Utah desert, the first sample-return mission to a comet. The first samples will be made available to a small number of teams, including The Open University’s Planetary and Space Science Research Institute (PSSRI), for preliminary analysis before their release to the wider scientific community.


A team from The Open University including Dr Simon Green, Dr Ian Franchi, Dr John Bridges and Professors Tony McDonnell and Monica Grady will be among the world’s first scientists to analyse the samples that contain the fundamental building blocks of our Solar System. Analysis may be able to determine not only the origins of the Solar System from these samples, but also possibly the origins of life.

“Stardust could provide a new window into the distant past,” said Dr Green. “Comets are made of ice and are very cold and have been very cold since they were formed, so they haven’t been changed since the beginning of the formation of the Solar System. So we have almost a little time capsule of what things were like 4.5 billion years ago. We can also learn about processes in stars and interstellar dust clouds in which the dust grains originally formed. They may also reveal information about the origins of life since comets are a source of organic material that may have formed the original building blocks of life-forming molecules."

PSSRI involvement in this mission covers a number of areas:

  • The design and provision of sensors for the Dust Flux Monitor instrument and measurement of dust impacts at the Wild 2 encounter
  • Members of the dust coma modelling team li>Development of sample extraction and characterisation techniques in Aerogel.
  • Members of the Preliminary Examination Teams for sample analysis.

Professor Keith Mason, Chief Executive Officer of the Particle Physics and Astronomy Research Council (PPARC), which part funded the UK involvement in Stardust, said, “The return of the samples from Stardust is a truly remarkable feat. It will be the first time in the history of space exploration that samples from a comet will be returned to Earth. It is particularly exciting that the Open University team will be one of the first to analyse the samples – helping to further our understanding of the origins of the Solar System.”

Louis De La Foret | alfa
Further information:
http://www3.open.ac.uk/media/fullstory.aspx?id=8100

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>