Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough in puzzle of giant explosions in space

15.12.2005


Astronomers at the University of Hertfordshire have helped to solve one of the longest standing puzzles in astrophysics— the nature of the enormous explosions known as short-duration gamma ray bursts (GRBs).



In a paper to be published in Nature tomorrow (15th December), they will reveal that around 15% of short-duration bursts originate from galaxies within 300 million light years of the Milky Way – more than 10 times closer than previously thought.

Dr Nial Tanvir who is leading the Hertfordshire team commented: “GRBs are difficult to observe because they last such a short time, and the signature flash of gamma rays can only be observed by specially-designed satellites.”


He claims that this was one of the reasons that the nature of GRBs remained completely enigmatic until 1997, when it was found that at least one variety— the so-called `long-duration’ bursts, which last for more than two seconds — arise in very remote galaxies, billions of light years distant, and therefore must be the most violent explosions known.

However, the second variety of GRBs — the short-duration bursts (those lasting less than two seconds) — remained mysterious until earlier this year when a few short bursts were pin-pointed sufficiently well to track down their host galaxies. From looking at the kinds of galaxies the bursts were found in, and the way their light faded away, astronomers have concluded that these events were most likely the result of the merging of two super-dense objects, called neutron stars.

“Neutron stars are amongst the most bizarre objects known to science and are incredibly dense,” said Dr Robert Priddey, another member of the team. “A tea-spoon full of neutron star material would weigh tens of billions of tons. Their intense gravitational fields provide huge reservoirs of energy which we believe can power GRBs when two neutron stars merge together to form a black hole.”

The Hertfordshire team’s new result adds a further, unexpected twist to the tale: a significant proportion of short bursts seem to originate from galaxies much more local to us than those previously observed. These nearby short bursts, could, like their more distant brethren, result from the catastrophic collision of neutron stars, though if so then their outbursts must be much weaker. Alternatively they could be a fundamentally different kind of explosion. A prime candidate could be an exotic object called a magnetar — a lone neutron star with a magnetic field a hundred thousand billion times that of the Earth - tearing itself apart due to enormous magnetic stresses.

“An example of such an explosion was seen a year ago coming from a magnetar in our own Galaxy, the Milky Way, so it seems reasonable to expect they should occur occasionally in other galaxies too,” said Bob Chapman, a graduate student working on the project as part of his PhD research: “If so, they would look very much like short-duration GRBs.”

“Although we still don’t know for sure what produces the short-duration gamma-ray bursts, this is a crucial breakthrough because in astronomy knowing where something occurs is often the decisive step towards understanding it,” said Dr Andrew Levan, another Hertfordshire astronomer involved in the discovery.

Helene Murphy | alfa
Further information:
http://www.herts.ac.uk

More articles from Physics and Astronomy:

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>