Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough in puzzle of giant explosions in space

15.12.2005


Astronomers at the University of Hertfordshire have helped to solve one of the longest standing puzzles in astrophysics— the nature of the enormous explosions known as short-duration gamma ray bursts (GRBs).



In a paper to be published in Nature tomorrow (15th December), they will reveal that around 15% of short-duration bursts originate from galaxies within 300 million light years of the Milky Way – more than 10 times closer than previously thought.

Dr Nial Tanvir who is leading the Hertfordshire team commented: “GRBs are difficult to observe because they last such a short time, and the signature flash of gamma rays can only be observed by specially-designed satellites.”


He claims that this was one of the reasons that the nature of GRBs remained completely enigmatic until 1997, when it was found that at least one variety— the so-called `long-duration’ bursts, which last for more than two seconds — arise in very remote galaxies, billions of light years distant, and therefore must be the most violent explosions known.

However, the second variety of GRBs — the short-duration bursts (those lasting less than two seconds) — remained mysterious until earlier this year when a few short bursts were pin-pointed sufficiently well to track down their host galaxies. From looking at the kinds of galaxies the bursts were found in, and the way their light faded away, astronomers have concluded that these events were most likely the result of the merging of two super-dense objects, called neutron stars.

“Neutron stars are amongst the most bizarre objects known to science and are incredibly dense,” said Dr Robert Priddey, another member of the team. “A tea-spoon full of neutron star material would weigh tens of billions of tons. Their intense gravitational fields provide huge reservoirs of energy which we believe can power GRBs when two neutron stars merge together to form a black hole.”

The Hertfordshire team’s new result adds a further, unexpected twist to the tale: a significant proportion of short bursts seem to originate from galaxies much more local to us than those previously observed. These nearby short bursts, could, like their more distant brethren, result from the catastrophic collision of neutron stars, though if so then their outbursts must be much weaker. Alternatively they could be a fundamentally different kind of explosion. A prime candidate could be an exotic object called a magnetar — a lone neutron star with a magnetic field a hundred thousand billion times that of the Earth - tearing itself apart due to enormous magnetic stresses.

“An example of such an explosion was seen a year ago coming from a magnetar in our own Galaxy, the Milky Way, so it seems reasonable to expect they should occur occasionally in other galaxies too,” said Bob Chapman, a graduate student working on the project as part of his PhD research: “If so, they would look very much like short-duration GRBs.”

“Although we still don’t know for sure what produces the short-duration gamma-ray bursts, this is a crucial breakthrough because in astronomy knowing where something occurs is often the decisive step towards understanding it,” said Dr Andrew Levan, another Hertfordshire astronomer involved in the discovery.

Helene Murphy | alfa
Further information:
http://www.herts.ac.uk

More articles from Physics and Astronomy:

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>