Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inside a quantum dot: Tracking electrons at trillionths of a second

24.11.2005


Researchers at the EPFL (Ecole Polytechnique Federale de Lausanne) have developed a new machine that can reveal how electrons behave inside a single nano-object. The results from initial tests on pyramidal gallium-arsenide quantum dots are presented in an article in the November 24 issue of Nature.

Hiding in the lab behind a dramatic black curtain, the hardware setup is not particularly imposing. It doesn’t look expensive. Nonetheless, this machine in EPFL’s Laboratory of quantum optoelectronics took four years to perfect and represents an equipment investment of more than a million Swiss francs.

It is an ingenious combination of technologies onto a single powerful platform. It will improve our understanding of the dynamics that rule the nanoscale world, perhaps opening doors to exploiting the physics of nanoscale phenomena for practical ends.



Even the most sophisticated methods used to explore material properties and dynamics run into limits when applied at the nanoscale. Current techniques either have good spatial resolution (down to tens of nanometers or below) or an ultrafast time resolution (down to picoseconds), but not both.

At least not until now. The machine developed by Professor Benoit Deveaud-Pledran and his EPFL colleagues is the first tool that can track the passage of an electron in a nanostructure – at a time scale of ten picoseconds and a spatial resolution of 50 nanometers.

The EPFL researchers replaced the standard electron gun filament on an off-the-shelf electron microscope with a 20 nanometer-thick gold photocathode. The gold is illuminated by an ultraviolet mode-locked laser, generating an electron beam that pulses 80 million times per second. Each pulse contains fewer than 10 electrons. The electrons excite the sample, causing it to emit light. The spectroscopic information is collected and analyzed to recreate the surface morphology and to trace the path the electrons follow through the sample.

Deveaud-Pledran and his colleagues tested their new machine on pyramidal quantum dots. These 2-micron-high nano-objects, specially synthesized in the lab of EPFL professor Eli Kapon, contain several different nanostructures, making them ideal test objects. When the electron beam impacts the pyramid, the electrons diffuse towards the closest nanostructure. From there, the diffusion continues until the point of lowest energy is reached -- the quantum dot at the tip of the pyramid. The time traces corresponding to each of these nanostructures reveal just how critical that 10- picosecond time resolution is; with even a 100-picosecond resolution, important information would be lost.

The machine will not only give us a glimpse into nanoscale dynamics, but because it will work on any semiconductor, it will also allow researchers to study previously intractable materials. The wide energy range of the electrons in the beam can excite materials that won’t luminesce with laser techniques, explains Deveaud-Pledran. "With a laser, you can’t get a short enough wavelength to excite diamond or silicon, for example. This machine will."

Nanotechnology is widely heralded as the key to the technology of the future -- everything from quantum computing to ultra-dense data storage to quantum cryptography depends on the behavior and control of materials at the nanoscale.

"Remember the first portable CD-players?" says Deveaud. "They consumed 4 AA batteries reading a single disk. We improved our understanding of the physics of materials, and now they consume 50 times less energy. As far as the nanoworld is concerned, we still don’t understand the dynamics of materials at the nanoscale. I can’t tell you exactly what this machine will lead to because that depends on who uses it and what we find. But there’s no question that it will help us make progress, and that the potential applications are exciting."

Benoit Deveaud-Pledran | EurekAlert!
Further information:
http://www.epfl.ch

More articles from Physics and Astronomy:

nachricht Magnetic nano-imaging on a table top
20.04.2018 | Georg-August-Universität Göttingen

nachricht New record on squeezing light to one atom: Atomic Lego guides light below one nanometer
20.04.2018 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>