Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inside a quantum dot: Tracking electrons at trillionths of a second

24.11.2005


Researchers at the EPFL (Ecole Polytechnique Federale de Lausanne) have developed a new machine that can reveal how electrons behave inside a single nano-object. The results from initial tests on pyramidal gallium-arsenide quantum dots are presented in an article in the November 24 issue of Nature.

Hiding in the lab behind a dramatic black curtain, the hardware setup is not particularly imposing. It doesn’t look expensive. Nonetheless, this machine in EPFL’s Laboratory of quantum optoelectronics took four years to perfect and represents an equipment investment of more than a million Swiss francs.

It is an ingenious combination of technologies onto a single powerful platform. It will improve our understanding of the dynamics that rule the nanoscale world, perhaps opening doors to exploiting the physics of nanoscale phenomena for practical ends.



Even the most sophisticated methods used to explore material properties and dynamics run into limits when applied at the nanoscale. Current techniques either have good spatial resolution (down to tens of nanometers or below) or an ultrafast time resolution (down to picoseconds), but not both.

At least not until now. The machine developed by Professor Benoit Deveaud-Pledran and his EPFL colleagues is the first tool that can track the passage of an electron in a nanostructure – at a time scale of ten picoseconds and a spatial resolution of 50 nanometers.

The EPFL researchers replaced the standard electron gun filament on an off-the-shelf electron microscope with a 20 nanometer-thick gold photocathode. The gold is illuminated by an ultraviolet mode-locked laser, generating an electron beam that pulses 80 million times per second. Each pulse contains fewer than 10 electrons. The electrons excite the sample, causing it to emit light. The spectroscopic information is collected and analyzed to recreate the surface morphology and to trace the path the electrons follow through the sample.

Deveaud-Pledran and his colleagues tested their new machine on pyramidal quantum dots. These 2-micron-high nano-objects, specially synthesized in the lab of EPFL professor Eli Kapon, contain several different nanostructures, making them ideal test objects. When the electron beam impacts the pyramid, the electrons diffuse towards the closest nanostructure. From there, the diffusion continues until the point of lowest energy is reached -- the quantum dot at the tip of the pyramid. The time traces corresponding to each of these nanostructures reveal just how critical that 10- picosecond time resolution is; with even a 100-picosecond resolution, important information would be lost.

The machine will not only give us a glimpse into nanoscale dynamics, but because it will work on any semiconductor, it will also allow researchers to study previously intractable materials. The wide energy range of the electrons in the beam can excite materials that won’t luminesce with laser techniques, explains Deveaud-Pledran. "With a laser, you can’t get a short enough wavelength to excite diamond or silicon, for example. This machine will."

Nanotechnology is widely heralded as the key to the technology of the future -- everything from quantum computing to ultra-dense data storage to quantum cryptography depends on the behavior and control of materials at the nanoscale.

"Remember the first portable CD-players?" says Deveaud. "They consumed 4 AA batteries reading a single disk. We improved our understanding of the physics of materials, and now they consume 50 times less energy. As far as the nanoworld is concerned, we still don’t understand the dynamics of materials at the nanoscale. I can’t tell you exactly what this machine will lead to because that depends on who uses it and what we find. But there’s no question that it will help us make progress, and that the potential applications are exciting."

Benoit Deveaud-Pledran | EurekAlert!
Further information:
http://www.epfl.ch

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>