Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New high-throughput crystallization facility at EMBL-Hamburg to give boost to structural biology community

16.11.2005


Today the European Molecular Biology Laboratory (EMBL) opens a new high-throughput crystallization facility at its Outstation located on the campus of the German Synchrotron Radiation Facility (DESY) in Hamburg, Germany. The facility, made possible by major funds from the German Ministry for Science and Education (BMBF), will combine technological advances in new ways to transform proteins into crystals, a key step in efforts to automate the process of analyzing protein structures. “We’re very grateful to the BMBF and the European Union for supporting the initiative, and thus providing an important service to the European life sciences community,” says EMBL Director General Iain Mattaj.



Structural biologists attempt to understand how proteins perform their many functions by determining their three-dimensional structures by X-ray crystallography. The method has been revolutionized by the use of the most powerful sources of X-rays around the world, such as the synchrotron at DESY. EMBL offers scientists throughout Europe access to instruments at DESY and at the ESRF in Grenoble, France.

The atomic structures of biological molecules can provide key information, for example, showing how they assemble into large complexes or how their function can be inhibited by drugs. However, getting proteins into crystal form is still a major bottleneck and a time-consuming step. “It can take researchers several thousand trials to successfully crystallize a protein,” says Jochen Müller-Dieckmann, head of the new facility. But while state-of-the-art synchrotron beamlines throughout Europe are available for use by the research community, there are almost no facilities with large capacities for crystallization. That will change with the new facility in Hamburg. Even prior to the official opening, scientists have shown a keen interest.


The EMBL facility combines technological advances in new ways to automate every step along the crystallization process. With the new high-throughput set up, 10,000 experiments can be run each day, and one million experiments can be stored and imaged. After an initial test phase, the facility will serve users from all across Europe.

“The EMBL Hamburg Outstation is in a critical transition phase, building new beamlines for life sciences at the future PETRA-3 synchrotron radiation ring at DESY in Hamburg,” says EMBL-Hamburg Head Matthias Wilmanns. “The opening of the high-throughput crystallization facility is a pivotal step towards building an integrated research center with state-of-the-art facilities in structural biology.”

Sarah Sherwood | alfa
Further information:
http://www.embl.org/aboutus/news/press/2005/press16nov05.html

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>