Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New high-throughput crystallization facility at EMBL-Hamburg to give boost to structural biology community

16.11.2005


Today the European Molecular Biology Laboratory (EMBL) opens a new high-throughput crystallization facility at its Outstation located on the campus of the German Synchrotron Radiation Facility (DESY) in Hamburg, Germany. The facility, made possible by major funds from the German Ministry for Science and Education (BMBF), will combine technological advances in new ways to transform proteins into crystals, a key step in efforts to automate the process of analyzing protein structures. “We’re very grateful to the BMBF and the European Union for supporting the initiative, and thus providing an important service to the European life sciences community,” says EMBL Director General Iain Mattaj.



Structural biologists attempt to understand how proteins perform their many functions by determining their three-dimensional structures by X-ray crystallography. The method has been revolutionized by the use of the most powerful sources of X-rays around the world, such as the synchrotron at DESY. EMBL offers scientists throughout Europe access to instruments at DESY and at the ESRF in Grenoble, France.

The atomic structures of biological molecules can provide key information, for example, showing how they assemble into large complexes or how their function can be inhibited by drugs. However, getting proteins into crystal form is still a major bottleneck and a time-consuming step. “It can take researchers several thousand trials to successfully crystallize a protein,” says Jochen Müller-Dieckmann, head of the new facility. But while state-of-the-art synchrotron beamlines throughout Europe are available for use by the research community, there are almost no facilities with large capacities for crystallization. That will change with the new facility in Hamburg. Even prior to the official opening, scientists have shown a keen interest.


The EMBL facility combines technological advances in new ways to automate every step along the crystallization process. With the new high-throughput set up, 10,000 experiments can be run each day, and one million experiments can be stored and imaged. After an initial test phase, the facility will serve users from all across Europe.

“The EMBL Hamburg Outstation is in a critical transition phase, building new beamlines for life sciences at the future PETRA-3 synchrotron radiation ring at DESY in Hamburg,” says EMBL-Hamburg Head Matthias Wilmanns. “The opening of the high-throughput crystallization facility is a pivotal step towards building an integrated research center with state-of-the-art facilities in structural biology.”

Sarah Sherwood | alfa
Further information:
http://www.embl.org/aboutus/news/press/2005/press16nov05.html

More articles from Physics and Astronomy:

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

nachricht Magnetic moment of a single antiproton determined with greatest precision ever
19.01.2017 | Johannes Gutenberg-Universität Mainz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>