Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding superconductors that can take the heat

09.11.2005


By studying how superconductors interact with magnetic fields, Pitt researchers advance quest for higher-temperature superconducting materials



Superconductors are materials with no electrical resistance that are used to make strong magnets and must be kept extremely cold--otherwise, they lose their superconducting abilities. Even the "high-temperature" superconductors discovered in the 1980s must be kept at around -300°F.

The search for superconductors that function at higher temperatures has taken a step forward with new findings from University of Pittsburgh professor of physics and astronomy Yadin Y. Goldschmidt and former Pitt postdoctoral associate Eduardo Cuansing that were published in the Oct. 21 issue of the journal Physical Review Letters.


When a superconductor is exposed to a magnetic field, the field penetrates it in the form of thin tubes, called vortices. Around each tube circulates an electric current. These vortices arrange themselves into patterns and melt when the temperature of the material is raised.

"This melting transition of the vortices is important, because it usually causes superconductivity to disappear," said Goldschmidt. "It is thus beneficial to delay the full melting as much as possible."

In addition to confirming previous experimental results, Goldschmidt and Cuansing used computer simulations of the vortex melting process to find, for the first time, direct evidence of new vortex patterns.

"Experimentalists can hardly see individual vortices," said Goldschmidt. "But with our simulations, we can actually see a picture of what’s going on inside the material."

Since the vortices tend to attach to long, thin holes in the material, called columnar defects, the Pitt researchers suspected that the vortices would behave differently in the presence of such defects. And they did: When there were more vortices than holes, the vortex matter melted in two stages instead of one as the temperature was raised.

"Once physicists understand these melting mechanisms, they may be able to design materials that remain superconductors at higher temperatures," Goldschmidt said.

Karen Hoffmann | EurekAlert!
Further information:
http://www.pitt.edu

More articles from Physics and Astronomy:

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>