Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding superconductors that can take the heat

09.11.2005


By studying how superconductors interact with magnetic fields, Pitt researchers advance quest for higher-temperature superconducting materials



Superconductors are materials with no electrical resistance that are used to make strong magnets and must be kept extremely cold--otherwise, they lose their superconducting abilities. Even the "high-temperature" superconductors discovered in the 1980s must be kept at around -300°F.

The search for superconductors that function at higher temperatures has taken a step forward with new findings from University of Pittsburgh professor of physics and astronomy Yadin Y. Goldschmidt and former Pitt postdoctoral associate Eduardo Cuansing that were published in the Oct. 21 issue of the journal Physical Review Letters.


When a superconductor is exposed to a magnetic field, the field penetrates it in the form of thin tubes, called vortices. Around each tube circulates an electric current. These vortices arrange themselves into patterns and melt when the temperature of the material is raised.

"This melting transition of the vortices is important, because it usually causes superconductivity to disappear," said Goldschmidt. "It is thus beneficial to delay the full melting as much as possible."

In addition to confirming previous experimental results, Goldschmidt and Cuansing used computer simulations of the vortex melting process to find, for the first time, direct evidence of new vortex patterns.

"Experimentalists can hardly see individual vortices," said Goldschmidt. "But with our simulations, we can actually see a picture of what’s going on inside the material."

Since the vortices tend to attach to long, thin holes in the material, called columnar defects, the Pitt researchers suspected that the vortices would behave differently in the presence of such defects. And they did: When there were more vortices than holes, the vortex matter melted in two stages instead of one as the temperature was raised.

"Once physicists understand these melting mechanisms, they may be able to design materials that remain superconductors at higher temperatures," Goldschmidt said.

Karen Hoffmann | EurekAlert!
Further information:
http://www.pitt.edu

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>