Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earliest meteorites provide new piece in planetary formation puzzle

20.09.2005


Researchers trying to understand how the planets formed have uncovered a new clue by analysing meteorites that are older than the earth.



The research shows that the process which depleted planets and meteorites of so-called volatile elements such as zinc, lead and sodium, must have been one of the first things to happen in our nebula.

The implication of this clue is that ’volatile depletion’ may be an inevitable part of planet formation - a feature not just of our Solar System, but of many other planetary systems too.


The researchers at Imperial College London reached their conclusions after analysing the composition of primitive meteorites, coal-like rocks that are older than the earth and which have barely changed since the Solar System was made up of fine dust and gas.

Their analysis, published today in the Proceedings of the National Academy of Sciences, shows that all the components that make up these rocks are depleted of volatile elements. This means that volatile element depletion must have occurred before the earliest solids had formed.

Dr Phil Bland, from Imperial’s Department of Earth Science and Engineering, who led the research, explains: "Studying meteorites helps us to understand the initial evolution of the early Solar System, its environment, and what the material between stars is made of. Our results answer one of a huge number of questions we have about the processes that converted a nebula of fine dust and gas into planets."

For planetary scientists, the most valuable meteorites are those that are found immediately after falling to earth, and so are only minimally contaminated by the terrestrial environment. The researchers analysed around half of the approximately 45 primitive meteorite falls in existence around the world.

All of the terrestrial planets in the Solar System as far out as Jupiter, including Earth, are depleted of volatile elements. Researchers have long known that this depletion must have been an early process, but it was unknown whether it occurred at the beginning of the formation of the Solar System, or a few million years later.

Dr Phil Bland is a member of the Impacts and Astromaterials Research Centre (IARC), which combines planetary science researchers from Imperial College London and the Natural History Museum.

Laura Gallagher | alfa
Further information:
http://www.imperial.ac.uk

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>