Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neutrons Born In Lightning

13.09.2005


It turns out that a stroke of lightning produces thermonuclear reaction, which generates quite a noticeable stream of neutrons.

To produce thermonuclear reaction it is necessary, firstly, to have nuclei with a large quantity of neutrons available, for example, deuterium nuclei, and secondly, these nuclei should possess sufficiently high velocity and merge together upon collision, having overcome the Coulomb barrier. It turns out that all these conditions are observed in the course of a stroke of lightning – such a conslusion is evident from calculations by B.M. Kuzhevsky, Ph.D. (Physics&Mathematics), head of the neutron research laboratory, Skobeltsin Scientific Research Institute of Nuclear Physics (Moscow State University).

Deuterium is always present in water: on average, a molecule of DHO (water, where one of hydrogen atoms is replaced by deuterium) falls to 6,800 molecules of H2O. That means – taking into account the quantity of water vapour available in the atmosphere (i.e. 5x10^-4 g/cubic centimeter) – there will be 10^15 deuterium atoms per cubic centimeter. In lightning, these atoms turn into ions and are capable of gathering speed up to considerable energy. With the lightning canal diameter varying from 2 millimeters to 5 centimeters, and discharge duration making the ten-thousandth of a second, it proves that billions of deuterium atoms will have time to start reacting with each other and to generate precisely two times less atoms of helium-3 and neutrons. These neutrons already possess enormous energy – 2.45 MeV. However, in the atmosphere of our planet they are capable of living at most for 0.2 seconds, during which they will inevitably meet with nitrogen atoms and be absorbed by them. This time period is sufficient for neutrons to fly a distance of one or two kilometers.



The calculation has been also confirmed by experimental data. The DYAIZA facility developed at the Institute and installed in Moscow at the Vorobyevy Hills repeatedly recorded neutron emission peaks during thunderstorms, their magnitude exceeding that of the background by hundreds of times.

Several important conclusions can be drawn from the above effort. Firstly, this helps to solve a long-standing puzzle: why cosmonauts on board the MIR space station observed high neutron background in the area of the equator. Keeping in mind that thunderstorms permanently burst out in this region, it is easy to guess where high neutron background comes from. Secondly, the same mechanism should also work in the atmospheres of Venus and Jupiter where thunderstorms are also frequent and sporadic neutron streams should arise there. That means that investigation of these planets’ neutron emission should take into account this particular fact not to confuse by accident “thundery” neutrons with some other neutrons.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Physics and Astronomy:

nachricht Breaking the optical bandwidth record of stable pulsed lasers
24.01.2017 | Institut national de la recherche scientifique - INRS

nachricht European XFEL prepares for user operation: Researchers can hand in first proposals for experiments
24.01.2017 | European XFEL GmbH

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>