Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UniS scientists to investigate the secrets of the universe

03.08.2005


The Nuclear Physics Group at the University of Surrey has been awarded a large scale grant worth almost half a million pounds (£483k) from the UK Engineering and Physical Sciences Research Council (EPSRC) to synthesise and study the structure of the most exotic forms of nuclear matter created to date.



The Surrey collaboration, led by Dr. Paddy Regan, Reader in Nuclear Physics, has won a four-year grant to perform a series of experiments at the € 1Billion GSI-FAIR heavy-ion research centre located at Darmstadt, Germany. This unique international facility allows scientists from all over the world to perform experiments to probe the structure of atomic nuclei, which make up more than 99.95% of all observable matter. The facility accelerates atoms to very high energies (more than 100 thousand miles per second!) before colliding them with stationary metallic ’production’ targets in a process know as ’projectile fragmentation’.

The residual nuclear fragments left over from these violent collisions can form very-rare sub-species of the atomic elements found on earth, but with an abnormal number of neutrons compared to the stable elements which everyday matter is constructed from. These exotic or ’radioactive’ species are of fundamental interest to scientists in understanding how the elements were originally formed in exploding stars in the early universe.


The research also has many applied spin-offs from the high-efficiency detection of radioactivity, including potential importance in areas such as medical imaging and cancer treatment, environmental radioactivity monitoring, nuclear power generation and decommissioning, weapons limitation and nuclear anti-terrorism work. The UniS group leads a major international collaboration, known as the RISING Collaboration, which includes almost 100 physicists from over 30 different institutions around the world. Dr. Regan, who is the international spokesperson for this collaboration, said

’The award of this major research grant once again highlights the world-leading position the Nuclear Physics group at UniS holds in this highly competitive areas of fundamental research. This grant will allow us to probe deeper and further than ever before into unlocking the fundamental secrets of how the elements were created and how atoms are formed.’

The Surrey group working on this project consists of seven academics,
Dr. Regan, Profs. William Gelletly OBE, Jeff Tostevin, Phil Walker and Drs. Paul Stevenson, Wilton Catford and Zsolt Podolyak.

The Physics Department at Surrey houses the largest academic research Nuclear Physics group in the UK and hosted NUSTAR05 International Nuclear Physics conference in January this year.

Stuart Miller | alfa
Further information:
http://www.surrey.ac.uk

More articles from Physics and Astronomy:

nachricht Igniting a solar flare in the corona with lower-atmosphere kindling
29.03.2017 | New Jersey Institute of Technology

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>