Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tandem ions may lead the way to better atomic clocks

29.07.2005


NIST researchers trapped aluminum and beryllium ions in the device above in experiments designed to produce an atomic clock that could be significantly more precise than today’s most accurate atomic clocks. Credit: National Institute of Standards and Technology


NIST detects ’ticks’ in aluminum, with help from intermediary atom

Physicists at the Commerce Department’s National Institute of Standards and Technology (NIST) have used the natural oscillations of two different types of charged atoms, or ions, confined together in a single trap, to produce the "ticks" that may power a future atomic clock.

As reported in the July 29 issue of Science,* the unusual tandem technique involves use of a single beryllium ion to accurately sense the higher-frequency vibrations of a single aluminum ion. The NIST group used ultraviolet lasers to transfer energy from the aluminum’s vibrations to a shared "rocking" motion of the pair of ions, and then detected the magnitude of the vibrations through the beryllium ion. The new technique solves a long-standing problem of how to monitor the properties of an aluminum ion, which cannot be manipulated easily using standard laser techniques.



The tandem approach might be used to make an atomic clock based on optical frequencies, which has the potential to be more accurate than today’s microwave-based atomic clocks. It may also allow simplified designs for quantum computers, a potentially very powerful technology using the quantum properties of matter and light to represent 1s and 0s.

"Our experiments show that we can transfer information back and forth efficiently between different kinds of atoms. Now we are applying this technique to develop accurate optical clocks based on single ions," said Till Rosenband of NIST’s laboratories in Boulder, Colo.

Today’s international time and frequency standards measure naturally occurring oscillations of cesium atoms that fall within the frequency range of microwaves, about 9 billion cycles per second. By contrast, optical frequencies are about 100,000 times higher, or about one quadrillion cycles per second, thus dividing time into smaller units. Aluminum may offer advantages over other atoms, such as mercury, being considered for optical atomic clocks.

Building a clock based on aluminum ions has been impractical until now because this atom fails to meet three of four requirements. It does oscillate between two different energy states at a stable, optical frequency that can be used as a clock reference. However, aluminum cannot be cooled with existing lasers, and its quantum state is difficult to prepare and detect directly. The Science paper describes how beryllium--a staple of NIST research on time and frequency standards as well as quantum computing--can fulfill these three requirements while the aluminum acts as a clock.

In the NIST experiments, the two ions were confined close together in an electromagnetic trap. The beryllium ion was laser cooled and slowed to almost absolute zero temperature, which helped to cool the adjacent aluminum ion. Then the scientists used a different laser to place the aluminum ion in a special quantum state called a "superposition," in which, due to the unusual rules of quantum physics, the ion is in both of its clock-related energy levels at once. More laser pulses were used to convert this clock state into a rocking motion, which--because of the physical proximity of the two ions and the interaction of their electrical charges--was shared by the beryllium ion. As the two ions rocked together in a coordinated fashion, scientists applied two additional laser beams to convert this motion into a change in energy level of the beryllium ion, which was then detected.

When the information is transferred between the two ions, they are briefly "entangled," another unusual phenomenon of quantum physics in which the properties of physically distinct particles are correlated. A logic operation borrowed from quantum computing was used to transfer the aluminum’s quantum state to the beryllium. Logic operations are similar to "if/then" statements in which the outcome depends on the initial state. For instance, if the aluminum’s original state was at the lowest energy level, then no information was transferred. But if the original state was at a higher level, then energy was transferred to the beryllium in a proportional amount.

By repeating the experiment many times, with different laser frequencies creating a variety of superposition states in the aluminum, scientists could determine its "resonant" or characteristic frequency extremely accurately. This is the frequency of an internal vibration of the aluminum atom, which can be used as the "ticks" of an atomic clock.

The tandem technique could be used to investigate the potential of various atoms, such as boron and helium, for use in optical atomic clocks, according to the paper. The technique also could be used in quantum computing experiments to distribute information between different types of ions or atoms. Because different atoms respond to different frequencies of light, this could improve control of ions or atoms within a potential future quantum computer.

The work described in Science was supported in part by the Office of Naval Research and the Advanced Research and Development Activity/National Security Agency.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov
http://qubit.nist.gov

More articles from Physics and Astronomy:

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>