Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tandem ions may lead the way to better atomic clocks

29.07.2005


NIST researchers trapped aluminum and beryllium ions in the device above in experiments designed to produce an atomic clock that could be significantly more precise than today’s most accurate atomic clocks. Credit: National Institute of Standards and Technology


NIST detects ’ticks’ in aluminum, with help from intermediary atom

Physicists at the Commerce Department’s National Institute of Standards and Technology (NIST) have used the natural oscillations of two different types of charged atoms, or ions, confined together in a single trap, to produce the "ticks" that may power a future atomic clock.

As reported in the July 29 issue of Science,* the unusual tandem technique involves use of a single beryllium ion to accurately sense the higher-frequency vibrations of a single aluminum ion. The NIST group used ultraviolet lasers to transfer energy from the aluminum’s vibrations to a shared "rocking" motion of the pair of ions, and then detected the magnitude of the vibrations through the beryllium ion. The new technique solves a long-standing problem of how to monitor the properties of an aluminum ion, which cannot be manipulated easily using standard laser techniques.



The tandem approach might be used to make an atomic clock based on optical frequencies, which has the potential to be more accurate than today’s microwave-based atomic clocks. It may also allow simplified designs for quantum computers, a potentially very powerful technology using the quantum properties of matter and light to represent 1s and 0s.

"Our experiments show that we can transfer information back and forth efficiently between different kinds of atoms. Now we are applying this technique to develop accurate optical clocks based on single ions," said Till Rosenband of NIST’s laboratories in Boulder, Colo.

Today’s international time and frequency standards measure naturally occurring oscillations of cesium atoms that fall within the frequency range of microwaves, about 9 billion cycles per second. By contrast, optical frequencies are about 100,000 times higher, or about one quadrillion cycles per second, thus dividing time into smaller units. Aluminum may offer advantages over other atoms, such as mercury, being considered for optical atomic clocks.

Building a clock based on aluminum ions has been impractical until now because this atom fails to meet three of four requirements. It does oscillate between two different energy states at a stable, optical frequency that can be used as a clock reference. However, aluminum cannot be cooled with existing lasers, and its quantum state is difficult to prepare and detect directly. The Science paper describes how beryllium--a staple of NIST research on time and frequency standards as well as quantum computing--can fulfill these three requirements while the aluminum acts as a clock.

In the NIST experiments, the two ions were confined close together in an electromagnetic trap. The beryllium ion was laser cooled and slowed to almost absolute zero temperature, which helped to cool the adjacent aluminum ion. Then the scientists used a different laser to place the aluminum ion in a special quantum state called a "superposition," in which, due to the unusual rules of quantum physics, the ion is in both of its clock-related energy levels at once. More laser pulses were used to convert this clock state into a rocking motion, which--because of the physical proximity of the two ions and the interaction of their electrical charges--was shared by the beryllium ion. As the two ions rocked together in a coordinated fashion, scientists applied two additional laser beams to convert this motion into a change in energy level of the beryllium ion, which was then detected.

When the information is transferred between the two ions, they are briefly "entangled," another unusual phenomenon of quantum physics in which the properties of physically distinct particles are correlated. A logic operation borrowed from quantum computing was used to transfer the aluminum’s quantum state to the beryllium. Logic operations are similar to "if/then" statements in which the outcome depends on the initial state. For instance, if the aluminum’s original state was at the lowest energy level, then no information was transferred. But if the original state was at a higher level, then energy was transferred to the beryllium in a proportional amount.

By repeating the experiment many times, with different laser frequencies creating a variety of superposition states in the aluminum, scientists could determine its "resonant" or characteristic frequency extremely accurately. This is the frequency of an internal vibration of the aluminum atom, which can be used as the "ticks" of an atomic clock.

The tandem technique could be used to investigate the potential of various atoms, such as boron and helium, for use in optical atomic clocks, according to the paper. The technique also could be used in quantum computing experiments to distribute information between different types of ions or atoms. Because different atoms respond to different frequencies of light, this could improve control of ions or atoms within a potential future quantum computer.

The work described in Science was supported in part by the Office of Naval Research and the Advanced Research and Development Activity/National Security Agency.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov
http://qubit.nist.gov

More articles from Physics and Astronomy:

nachricht Tracing aromatic molecules in the early universe
23.03.2017 | University of California - Riverside

nachricht New study maps space dust in 3-D
23.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>