Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Colorful math reveals how forces transmit through granular materials


Using color-changing plastic cylinders as a stand-in for a mass of granular material, Duke University physicists have created a computer-testable method to predict, particle-by-particle, how pushes, nudges and shoves at the edges transmit across large assemblages.

Masses of unpredictable granular particles -- from the ice chunks that make up avalanche-prone snowfields to the coal in gigantic coal bins -- can abruptly change behaviors with sometimes catastrophic results. Such shifts occur because granular materials can change "phases" from having solid to liquid properties, according to circumstances.

The new technique represents "a major step in a long-term goal to have an accurate model that describes how granular materials interact from the smallest grain scale on up," said Robert Behringer, a Duke physics professor.

In a report in the Thursday, June 23 2005 issue of the journal Nature, Behringer and his graduate student Trushant Majmudar described a mathematically nimble way to follow how forces ripple across a laboratory version of a granular mass -- a two-dimensional rectangle containing about 2,500 "grains" -- in this case special "photoelastic" cylinders.

These cylinders are so named because they become "birefringent" when pressured. Such birefringence means that wherever forces are applied to their surface, when viewed through a light-polarizing filter, their compressible plastic surfaces undergo harlequin-like color changes.

In work supported by the National Science Foundation and NASA, the Duke researchers built an experimental frame with movable sides to variably compress the grain field from top to bottom and side to side.

Majmudar then painstakingly plotted how colors shifted from translucently neutral to greens, reds and blues in parts of each of the cylinders as the forces transferred from the moving frames bent transmitted light waves.

In a two-year effort, the graduate student used these experimental photoelastic observations to develop a mathematical model that described the phenomena.

Using a set of 19th-century equations as a framework, he added his own calculations of the stresses inside and between the cylinders. He then mathematically "reversed time" to trace how forces should have been transmitted from cylinder to cylinder back to the initial nudge from a frame edge.

The Duke researchers tested Majmudar’s enhanced equations -- known as an inverse algorithm -- by running it on a computer. An illustration in their Nature paper showed that the computer-calculated picture of the transferred grain stresses was very similar to the experimental results.

Both the calculated and experimental results showed that stresses have long-range effects across the entire bed -- transferring jaggedly from particle to particle via extended "force chains" -- when the confined cylinders were squeezed in one direction but relaxed in the other.

Conversely, only short-range force chains were created when top-to-bottom pressure increases were the same as those from side-to-side.

Behringer’s Duke laboratory previously created and studied force chains in the late 1990s, using similar photoelastic cylinders. But at that time researchers were unable to do more than measure the average forces on particles, he said.

"The mathematical roots of this whole algorithm have been known since the 19th Century," Majmudar added. "And the photoelasticity aspects have been known for 50 years. But the approach before for doing these calculations was manual, with pen and paper. That’s not very useful for the kind of studies we want to do.

"Making it work in an automated fashion so that a computer can run it, and applying it on a large enough scale to ask the questions that physicists want answers to, that’s the tricky thing."

Added Behringer: "This is the first set of studies to determine the forces at the contacts between each of large numbers of particles. It’s the ability now to do that efficiently on a very rapid scale that has taken this research from the realm of being something visual -- seeing force chains -- to something that is truly quantitative. In some sense, this is as good as you can get it."

With this new perspective "we are now in a position to address a variety of important issues like the nature of jamming transition and the response function of a granular system," the two authors wrote in their new Nature paper.

The term "jamming transition" refers to changes that transform granular material interactions from a liquid-like to a solid-like state in a way that makes them "jam" in containers such as coal hoppers, said Behringer, who also holds a secondary faculty appointment at Duke’s Pratt School of Engineering.

"The long-term goal is to have an accurate model that describes granular materials starting with the smallest scale and going up to a scale large enough to be useful, for instance to someone who wants to design hoppers."

The new Nature report follows another by Behringer and his post-doctoral researcher Karen Daniels published April 29, 2005, in the journal Physical Review Letters. That paper described a controlled, measurable method to make granular materials alternate between their "solid" and "liquid" states.

Monte Basgall | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>