Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Colorful math reveals how forces transmit through granular materials

23.06.2005


Using color-changing plastic cylinders as a stand-in for a mass of granular material, Duke University physicists have created a computer-testable method to predict, particle-by-particle, how pushes, nudges and shoves at the edges transmit across large assemblages.

Masses of unpredictable granular particles -- from the ice chunks that make up avalanche-prone snowfields to the coal in gigantic coal bins -- can abruptly change behaviors with sometimes catastrophic results. Such shifts occur because granular materials can change "phases" from having solid to liquid properties, according to circumstances.

The new technique represents "a major step in a long-term goal to have an accurate model that describes how granular materials interact from the smallest grain scale on up," said Robert Behringer, a Duke physics professor.



In a report in the Thursday, June 23 2005 issue of the journal Nature, Behringer and his graduate student Trushant Majmudar described a mathematically nimble way to follow how forces ripple across a laboratory version of a granular mass -- a two-dimensional rectangle containing about 2,500 "grains" -- in this case special "photoelastic" cylinders.

These cylinders are so named because they become "birefringent" when pressured. Such birefringence means that wherever forces are applied to their surface, when viewed through a light-polarizing filter, their compressible plastic surfaces undergo harlequin-like color changes.

In work supported by the National Science Foundation and NASA, the Duke researchers built an experimental frame with movable sides to variably compress the grain field from top to bottom and side to side.

Majmudar then painstakingly plotted how colors shifted from translucently neutral to greens, reds and blues in parts of each of the cylinders as the forces transferred from the moving frames bent transmitted light waves.

In a two-year effort, the graduate student used these experimental photoelastic observations to develop a mathematical model that described the phenomena.

Using a set of 19th-century equations as a framework, he added his own calculations of the stresses inside and between the cylinders. He then mathematically "reversed time" to trace how forces should have been transmitted from cylinder to cylinder back to the initial nudge from a frame edge.

The Duke researchers tested Majmudar’s enhanced equations -- known as an inverse algorithm -- by running it on a computer. An illustration in their Nature paper showed that the computer-calculated picture of the transferred grain stresses was very similar to the experimental results.

Both the calculated and experimental results showed that stresses have long-range effects across the entire bed -- transferring jaggedly from particle to particle via extended "force chains" -- when the confined cylinders were squeezed in one direction but relaxed in the other.

Conversely, only short-range force chains were created when top-to-bottom pressure increases were the same as those from side-to-side.

Behringer’s Duke laboratory previously created and studied force chains in the late 1990s, using similar photoelastic cylinders. But at that time researchers were unable to do more than measure the average forces on particles, he said.

"The mathematical roots of this whole algorithm have been known since the 19th Century," Majmudar added. "And the photoelasticity aspects have been known for 50 years. But the approach before for doing these calculations was manual, with pen and paper. That’s not very useful for the kind of studies we want to do.

"Making it work in an automated fashion so that a computer can run it, and applying it on a large enough scale to ask the questions that physicists want answers to, that’s the tricky thing."

Added Behringer: "This is the first set of studies to determine the forces at the contacts between each of large numbers of particles. It’s the ability now to do that efficiently on a very rapid scale that has taken this research from the realm of being something visual -- seeing force chains -- to something that is truly quantitative. In some sense, this is as good as you can get it."

With this new perspective "we are now in a position to address a variety of important issues like the nature of jamming transition and the response function of a granular system," the two authors wrote in their new Nature paper.

The term "jamming transition" refers to changes that transform granular material interactions from a liquid-like to a solid-like state in a way that makes them "jam" in containers such as coal hoppers, said Behringer, who also holds a secondary faculty appointment at Duke’s Pratt School of Engineering.

"The long-term goal is to have an accurate model that describes granular materials starting with the smallest scale and going up to a scale large enough to be useful, for instance to someone who wants to design hoppers."

The new Nature report follows another www.dukenews.duke.edu/2005/05/grainchange.html by Behringer and his post-doctoral researcher Karen Daniels published April 29, 2005, in the journal Physical Review Letters. That paper described a controlled, measurable method to make granular materials alternate between their "solid" and "liquid" states.

Monte Basgall | EurekAlert!
Further information:
http://www.phy.duke.edu/~bob/
http://www.duke.edu

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>