Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Colorful math reveals how forces transmit through granular materials

23.06.2005


Using color-changing plastic cylinders as a stand-in for a mass of granular material, Duke University physicists have created a computer-testable method to predict, particle-by-particle, how pushes, nudges and shoves at the edges transmit across large assemblages.

Masses of unpredictable granular particles -- from the ice chunks that make up avalanche-prone snowfields to the coal in gigantic coal bins -- can abruptly change behaviors with sometimes catastrophic results. Such shifts occur because granular materials can change "phases" from having solid to liquid properties, according to circumstances.

The new technique represents "a major step in a long-term goal to have an accurate model that describes how granular materials interact from the smallest grain scale on up," said Robert Behringer, a Duke physics professor.



In a report in the Thursday, June 23 2005 issue of the journal Nature, Behringer and his graduate student Trushant Majmudar described a mathematically nimble way to follow how forces ripple across a laboratory version of a granular mass -- a two-dimensional rectangle containing about 2,500 "grains" -- in this case special "photoelastic" cylinders.

These cylinders are so named because they become "birefringent" when pressured. Such birefringence means that wherever forces are applied to their surface, when viewed through a light-polarizing filter, their compressible plastic surfaces undergo harlequin-like color changes.

In work supported by the National Science Foundation and NASA, the Duke researchers built an experimental frame with movable sides to variably compress the grain field from top to bottom and side to side.

Majmudar then painstakingly plotted how colors shifted from translucently neutral to greens, reds and blues in parts of each of the cylinders as the forces transferred from the moving frames bent transmitted light waves.

In a two-year effort, the graduate student used these experimental photoelastic observations to develop a mathematical model that described the phenomena.

Using a set of 19th-century equations as a framework, he added his own calculations of the stresses inside and between the cylinders. He then mathematically "reversed time" to trace how forces should have been transmitted from cylinder to cylinder back to the initial nudge from a frame edge.

The Duke researchers tested Majmudar’s enhanced equations -- known as an inverse algorithm -- by running it on a computer. An illustration in their Nature paper showed that the computer-calculated picture of the transferred grain stresses was very similar to the experimental results.

Both the calculated and experimental results showed that stresses have long-range effects across the entire bed -- transferring jaggedly from particle to particle via extended "force chains" -- when the confined cylinders were squeezed in one direction but relaxed in the other.

Conversely, only short-range force chains were created when top-to-bottom pressure increases were the same as those from side-to-side.

Behringer’s Duke laboratory previously created and studied force chains in the late 1990s, using similar photoelastic cylinders. But at that time researchers were unable to do more than measure the average forces on particles, he said.

"The mathematical roots of this whole algorithm have been known since the 19th Century," Majmudar added. "And the photoelasticity aspects have been known for 50 years. But the approach before for doing these calculations was manual, with pen and paper. That’s not very useful for the kind of studies we want to do.

"Making it work in an automated fashion so that a computer can run it, and applying it on a large enough scale to ask the questions that physicists want answers to, that’s the tricky thing."

Added Behringer: "This is the first set of studies to determine the forces at the contacts between each of large numbers of particles. It’s the ability now to do that efficiently on a very rapid scale that has taken this research from the realm of being something visual -- seeing force chains -- to something that is truly quantitative. In some sense, this is as good as you can get it."

With this new perspective "we are now in a position to address a variety of important issues like the nature of jamming transition and the response function of a granular system," the two authors wrote in their new Nature paper.

The term "jamming transition" refers to changes that transform granular material interactions from a liquid-like to a solid-like state in a way that makes them "jam" in containers such as coal hoppers, said Behringer, who also holds a secondary faculty appointment at Duke’s Pratt School of Engineering.

"The long-term goal is to have an accurate model that describes granular materials starting with the smallest scale and going up to a scale large enough to be useful, for instance to someone who wants to design hoppers."

The new Nature report follows another www.dukenews.duke.edu/2005/05/grainchange.html by Behringer and his post-doctoral researcher Karen Daniels published April 29, 2005, in the journal Physical Review Letters. That paper described a controlled, measurable method to make granular materials alternate between their "solid" and "liquid" states.

Monte Basgall | EurekAlert!
Further information:
http://www.phy.duke.edu/~bob/
http://www.duke.edu

More articles from Physics and Astronomy:

nachricht NASA's SDO sees partial eclipse in space
29.05.2017 | NASA/Goddard Space Flight Center

nachricht Strathclyde-led research develops world's highest gain high-power laser amplifier
29.05.2017 | University of Strathclyde

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>