Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


’Strange’ physics experiment is unraveling structure of proton


An international team of nuclear physicists has determined that particles called strange quarks do, indeed, contribute to the ordinary properties of the proton.

Quarks are subatomic particles that form the building blocks of atoms. How quarks assemble into protons and neutrons, and what holds them together, is not clearly understood. New experimental results are providing part of the answer.

The experiment, called G-Zero, was performed at Thomas Jefferson National Accelerator Facility in Newport News, Va. Designed to probe proton structure, specifically the contribution of strange quarks, the experiment has involved an international group of 108 scientists from 19 institutions. Steve Williamson, a physicist at the University of Illinois at Urbana-Champaign, is the experiment coordinator.

"The G-Zero experiment provided a much broader view of the small-scale structure of the proton," said Doug Beck, a physicist at Illinois and spokesman for the experiment. "While our results agree with hints from previous experiments, the new findings are significantly more extensive and provide a much clearer picture."

Beck will present the experimental results at a seminar at the Jefferson facility Friday morning. Also on Friday, the researchers will submit a paper describing the results to the journal Physical Review Letters. The paper will be posted on the physics archive (under "nuclear experiment") at

The centerpiece of the G-Zero experiment is a doughnut-shaped superconducting magnet 14 feet in diameter that was designed and tested by physicists at Illinois including Ron Laszewski, now retired. The 100,000-pound magnet took three years to build.

In the experiment, an intense beam of polarized electrons was scattered off liquid hydrogen targets located in the magnet’s core. Detectors, mounted around the perimeter of the magnet, recorded the number and position of the scattered particles. The researchers then used mathematical models to retrace the particles’ paths to determine their momenta.

"There is a lot of energy inside a proton," Beck said. "Some of that energy can change back and forth into particles called strange quarks." Unlike the three quarks (two "up" and one "down") that are always present in a proton, strange quarks can pop in and out of existence.

"Because of the equivalence of mass and energy, the energy fields in the proton can sometimes manifest themselves as these ’part-time’ quarks," Beck said. "This is the first time we observed strange quarks in this context, and it is the first time we measured how often this energy manifested itself as particles under normal circumstances."

The results are helping scientists better understand how one of the pieces of the Standard Model is put together. The Standard Model unifies three forces: electromagnetism, the weak nuclear interaction and the strong nuclear interaction.

"The G-Zero experiment tells us more about the strong interaction -- how protons and neutrons are held together," Beck said. "However, we still have much to learn."

James E. Kloeppel | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>