Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Superconducting nanowires show ability to measure magnetic fields


By using DNA molecules as scaffolds, scientists have created superconducting nanodevices that demonstrate a new type of quantum interference and could be used to measure magnetic fields and map regions of superconductivity.

Researchers at the University of Illinois at Urbana-Champaign have fabricated and studied nanostructures consisting of pairs of suspended superconducting wires as tiny as 3 to 4 molecular diameters (typically 5 to 15 nanometers) in width. The team consisted of physics professors Alexey Bezryadin and Paul Goldbart, and graduate students David Hopkins and David Pekker. Their work is described in the June 17 issue of the journal Science.

"Our measurements on these two-nanowire devices revealed a strange class of periodic oscillations in resistance with applied magnetic field," Bezryadin said. "Through experimentation and theory, we found both an explanation for this odd behavior and a way to put it to work."

To make their nanodevices, the researchers began by placing molecules of DNA across a narrow trench (about 100 nanometers wide) etched in a silicon wafer. The molecules and trench banks were then coated with a thin film of superconducting material (molybdenum-germanium). The result was a device containing a pair of homogeneous, superconducting nanowires with extremely fine features.

"In the absence of a magnetic field, these ultra-narrow wires exhibited a nonzero resistance over a broad temperature range," Bezryadin said. "At temperatures where thicker wires would already be superconducting, these DNA-templated wires remained resistive."

Tuning the strength of a magnetic field applied to the device, however, caused highly pronounced and periodic oscillations in resistance, at any temperature in the transition region.

"The applied magnetic field causes a small current to flow along the trench banks, and this current then causes a large change in resistance," Goldbart said. "The strength of the current is controlled only by the magnetic field and the width of the banks supporting the wires."

The resulting periodic oscillation is a reflection of the wave nature of matter that goes to the very heart of quantum mechanics, Goldbart said. "Unlike ordinary matter, the electrons in these wires are behaving as though they are one quantum mechanical object in one great quantum mechanical wave function."

Metallic nanodevices based on DNA scaffolds could be used in applications such as local magnetometry and the imaging of phase profiles created by supercurrents -- in essence a superconducting phase gradiometer, the researchers report.

"By taking advantage of DNA self-assembly processes, complex scaffolds could be created for electronic devices with features having molecular-scale dimensions," Bezryadin said.

In related work, to appear in the August issue of the journal Nanotechnology (published online in May), Bezryadin and undergraduate student Mikas Remeika improved the nanofabrication process by using a focused electron beam to locally alter the shape and structure of metallized nanowires.

Performed in a transmission electron microscope, electron-beam sculpting and crystallization can modify small segments of the nanowires, with a spatial resolution of approximately 3 nanometers, Bezryadin said. The technique could be used to fabricate novel electronic nanodevices, such as single-electron transistors, with dimensions less than 10 nanometers.

James E. Kloeppel | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>