Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


’Supersolid’ or melted ’superfluid’ film: A quantum difference


New calculations support an alternative to "superfluidity" of a solid as the explanation for the behavior of an isotope of helium, 4He, at temperatures approaching Absolute Zero, according to a report in Physical Review Letters.

Among the most provocative recent reports in condensed materials science were studies interpreting the behavior of solid 4He in an oscillating chamber as a "supersolid." In this current paper, John S. Wettlaufer, professor of geophysics andphysics at Yale University, and his colleague J. G. Dash, emeritus professor of physics at University of Washington, offer another possible explanation.

"If you rotate a container of nearly-frozen liquid 4He, even gently, it does unusual things -- hydrodynamically," said Wettlaufer. Superfluidity has long been shown to occur as liquid 4He is cooled to within two degrees of Absolute Zero. In this state, the liquid can flow without any resistance; rotating in a container it can continue without slowing, as long as it is kept at the low temperature. The state is an effect of quantum physics known as Bose-Einstein condensation (BEC).

The possibility of BEC in solid 4He was a theoretical speculation for many years, so the reports of Professor Moses Chan and his student E.-S. Kim at Penn State seemed to be the hoped for experimental validation.

However, Wettlaufer and Dash explain the observations differently. Their calculations show that even at temperatures below the freezing point of 4He, the boundary between solid 4He and the container is not frozen. They say that, instead, there is a thin lubricating superfluid film between the solid and its container.

The film is caused by melting at the boundary of the two solids, an effect that occurs in all solids. In ice, for example, interface melting influences the flow of glaciers, and causes frost heave in frozen ground.

Although the alternative explanation rejects the supersolid, it suggests a new and challenging study of superfluidity in a region of pressure and temperature that has not been accessible otherwise.

Related work in Wettlaufer’s group on thermodynamic and surface effects focuses on glycoproteins found in the blood of organisms that live at temperatures where most living things would be frozen. This research was supported by the National Science Foundation, the Bosack and Kruger Foundation and Yale University.

Janet Rettig Emanuel | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>