Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Supersolid’ or melted ’superfluid’ film: A quantum difference

16.06.2005


New calculations support an alternative to "superfluidity" of a solid as the explanation for the behavior of an isotope of helium, 4He, at temperatures approaching Absolute Zero, according to a report in Physical Review Letters.



Among the most provocative recent reports in condensed materials science were studies interpreting the behavior of solid 4He in an oscillating chamber as a "supersolid." In this current paper, John S. Wettlaufer, professor of geophysics andphysics at Yale University, and his colleague J. G. Dash, emeritus professor of physics at University of Washington, offer another possible explanation.

"If you rotate a container of nearly-frozen liquid 4He, even gently, it does unusual things -- hydrodynamically," said Wettlaufer. Superfluidity has long been shown to occur as liquid 4He is cooled to within two degrees of Absolute Zero. In this state, the liquid can flow without any resistance; rotating in a container it can continue without slowing, as long as it is kept at the low temperature. The state is an effect of quantum physics known as Bose-Einstein condensation (BEC).


The possibility of BEC in solid 4He was a theoretical speculation for many years, so the reports of Professor Moses Chan and his student E.-S. Kim at Penn State seemed to be the hoped for experimental validation.

However, Wettlaufer and Dash explain the observations differently. Their calculations show that even at temperatures below the freezing point of 4He, the boundary between solid 4He and the container is not frozen. They say that, instead, there is a thin lubricating superfluid film between the solid and its container.

The film is caused by melting at the boundary of the two solids, an effect that occurs in all solids. In ice, for example, interface melting influences the flow of glaciers, and causes frost heave in frozen ground.

Although the alternative explanation rejects the supersolid, it suggests a new and challenging study of superfluidity in a region of pressure and temperature that has not been accessible otherwise.

Related work in Wettlaufer’s group on thermodynamic and surface effects focuses on glycoproteins found in the blood of organisms that live at temperatures where most living things would be frozen. This research was supported by the National Science Foundation, the Bosack and Kruger Foundation and Yale University.

Janet Rettig Emanuel | EurekAlert!
Further information:
http://www.yale.edu

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>