Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Leading theories of cosmic explosions contradicted in a flash

01.06.2005


Satellite that could help solve mystery to be deactivated in September

Observations of a cosmic explosion detected on Feb. 15 by two NASA satellites have thrown into doubt one popular explanation for such explosions and have also seriously weakened the argument for yet another, according to University of Chicago astrophysicist Don Lamb. But solving the mystery any time soon may be forestalled by plans to shut down one of the satellites in September.

The explosion in question is a powerful burst of X-rays called an X-ray flash that was observed by NASA’s Swift and High Energy Transient Explorer-2 satellites. X-ray flashes seem to be related to gamma-ray bursts, the most powerful explosions in the universe. "No one understands this relationship at all. It’s a complete mystery," said Lamb, the Louis Block Professor in Astronomy & Astrophysics at the University of Chicago and a member of the HETE-2 science team.



Lamb will present some ideas on the relationship of X-ray flashes to gamma-ray bursts on May 31 during a meeting of the American Astronomical Society in Minneapolis. The co-authors of his paper are Tim Donaghy, a Ph.D. student in physics, and Carlo Graziani, Senior Research Associate in Astronomy & Astrophysics, both at the University of Chicago.

Discovered in 1969, Gamma-ray bursts last anywhere from fractions of a second to many minutes and pack the output of as many as 1,000 exploding stars. They occur almost daily, come from any direction in the sky, and are followed by afterglows that are visible for a few days at X-ray and optical wavelengths.

Discovered in 2000, X-ray flashes seem to form the less powerful end of a continuum of cosmic explosions that progresses to X-ray rich gamma-ray bursts and then culminates in gamma-ray bursts proper. All three phenomena occur in approximately equal numbers.

"We think that regular gamma-ray bursts are all produced by the collapse of massive stars and probably the creation of black holes," Lamb said. "I personally think it’s essentially a certainty that X-ray flashes are produced by the same kind of event."

But exactly how that occurs remains a matter of speculation. One possibility is that a varying rotation rate of the collapsed core of these massive stars produces different opening angles of the jets emitted from the bursts. "Maybe sometimes they’re rotating rapidly and you get narrow jets and other times they’re rotating less rapidly and you get wider X-ray rich jets and sometimes they’re rotating still more slowly and you get very broad jets that produce the X-ray flashes," Lamb explained.

The Feb. 15 X-ray flash, designated XRF 050215b, has yielded the best data ever on this phenomenon, thanks to the joint observations of the two NASA satellites. The next-best data come from a flash known as XRF 020427, detected in April 2002 by the Italian BeppoSAX satellite. Three characteristics of both flashes conflict with a popular theory that X-ray flashes are gamma-ray bursts as viewed from slightly off to the side of the jet instead of head on.

First, according to the popular theory, scientists expected the energy levels of an X-ray flash’s afterglow to connect smoothly on a gradient with the energy of the burst itself. Second, they expected the afterglow to fade fast. And third, they expected the afterglow to be faint when compared to the original burst.

These expectations all follow from Albert Einstein’s theory of special relativity, but none of them have panned out. Scientists apparently cannot rely on special relativity to explain X-ray flashes, Lamb said.

The satellite observations also conflict with the theory that the shape of the jets from a gamma-ray burst are universal, but only look different because of the viewing angle. Based on this theory, scientists would have predicted that the afterglow of the Feb. 15 X-ray flash afterglow would have faded within a day or so following the initial burst. But the afterglow showed now signs of fading even five days following the burst.

One theory suggests that all three types of explosions contain the same amount of energy, but that the opening angle of the jet emitted from the explosions defines their apparent brightness. In this scenario, narrow jets produce the gamma-ray bursts, wider jets result in X-ray rich gamma-ray bursts, and the broadest lead to X-ray flashes. Lamb and many others view this theory as a possibility. "There’s a lot of people who don’t or are not at all sure," he said.

The question could probably be settled within the next few years with more burst observations conducted jointly between the Swift and HETE-2 satellites, which measure slightly different properties of the phenomena. But NASA plans to discontinue the HETE-2 mission this September.

NASA would somehow need to find an additional $1.5 million annually to keep HETE-2 operating. "It’s not the best budgetary climate to try to pull this thing off," Lamb said. But if NASA somehow manages to do it, "The HETE mission would leverage the science that Swift could do by a significant amount," he said.

Steve Koppes | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>