Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists control the flip of electron spin in new study

31.05.2005


Today’s computers and other technological gizmos operate on electronic charges, but researchers predict that a new generation of smaller, faster, more efficient devices could be developed based on another scientific concept – electronic "spin." The problem, however, is that researchers have found it challenging to control or predict spin – which keeps practical applications out of reach.



But physicists in Europe, California and at Ohio University now have found a way to manipulate the spin of an electron with a jolt of voltage from a battery, according to research findings published in the recent issue of the journal Physical Review Letters.

In the new study, scientists applied voltage to the electron in a quantum dot, which is a tiny, nanometer-sized semiconductor. The burst of power changed the direction of the electron’s spin -- which can move either up or down. This also caused it to emit a small particle of light called a photon, explained Richard Warburton, a physicist with Heriot-Watt University in Edinburgh, Scotland, and lead author on the new paper.


"Usually you have no control over this at all – an electron flips its spin at some point, and you scratch your head and wonder why it happened. But in our experiment, we can choose how long this process takes," he said.

The experiment was based on a theory by Sasha Govorov, an Ohio University associate professor of physics and astronomy who is co-author on the current paper. Pierre Petroff, a scientist with the University of California at Santa Barbara, contributed the semiconductor used in the experiment, Indium Arsenide, which commonly is used in electronics. "It’s one of those happy collaborations -- Pierre has given us some fantastic material and Sasha has come up with some really smart ideas," Warburton said.

The scientists were able to manipulate how long it would take for the electron to flip its spin and emit a photon – from one to 20 nanoseconds. But Govorov’s theory suggests that 20 nanoseconds isn’t the upper limit, which will lead the physicists to try out longer time periods.

Scientists’ abilities to control the spin of the electron help determine the properties of the photon, which in turn could have implications for the development of optoelectronics and quantum cryptography. Photons could be encoded with secure information, which could serve as the basis for anti-eavesdropping technology, Warburton said.

The current study is one of many in the growing field of nanoscience that aims to find, understand and control physical effects at the nanoscale that could serve as the basis of a new generation of technology that is smaller and more powerful than today’s electronic devices, Govorov said.

"The principles, knowledge and experience will be used for practical, real devices, we hope," he said.

The study was funded by EPSRC in the United Kingdom, Ohio University, Volkswagen, and the Alexander von Humboldt Foundations, with additional support by the Scottish Executive and the Royal Society of Edinburgh. Collaborators on the paper are Jason Smith and Paul Dalgarno of Heriot-Watt University, Khaled Karrai of the Ludwig-Maximilians-Universitat in Germany, and Brian Gerardot and Pierre Petroff with the University of California Santa Barbara.

Andrea Gibson | EurekAlert!
Further information:
http://www.ohio.edu

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>