Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hydrogen sensors are faster, more sensitive

31.05.2005


The same kind of chemical coating used to shed rainwater from aircraft and automobile windows also dramatically enhances the sensitivity and reaction time of hydrogen sensors. Hydrogen sensor technology is a critical component for safety and other practical concerns in the proposed hydrogen economy. For example, hydrogen sensors will detect leaks from hydrogen powered cars and fueling stations long before the gas becomes an explosive hazard.



The discovery was made by a team led by Zhili Xiao, a physicist in the Materials Science Division at the U.S. Department of Energy’s Argonne National Laboratory and an associate professor of physics at Northern Illinois University. The scientists demonstrated that the enhanced sensor design shows a rapid and reversible response to hydrogen gas that is repeatable over hundreds of cycles. A report on the team’s research was published in May in Applied Physics Letters.

The sensor material is made by depositing a discontinuous palladium thin film on a glass slide coated with a grease-like self-assembled monolayer of siloxane anchored to the surface.


"By adding the siloxane self-assembled monolayer, we have changed the thin film dynamics," said Michael Zach, a chemist and holder of the Glenn Seaborg Postdoctoral Fellowship at Argonne. "Other sensors have a response time of several seconds upon exposure to 2 percent hydrogen; ours works in tens of milliseconds." Also, the scientists reported that the enhanced sensors are sensitive enough to detect hydrogen levels as low as 25 parts per million (ppm), far below hydrogen’s lower explosive limit around 40,000 ppm. Their sensitivity and speed are superior to any available commercial sensors.

Palladium is an ideal material for hydrogen sensing because it selectively absorbs hydrogen gas and forms a chemical species known as a palladium hydride. Thick-film hydrogen sensor designs rely on the fact that palladium metal hydride’s electrical resistance is greater than the metal’s resistance. In such systems, the absorption of hydrogen is accompanied by a measurable increase in electrical resistance.

However, a palladium thin-film sensor is based on an opposing property that depends on the nanoscale structures within the thin film. In the thin film, nanosized palladium particles swell when the hydride is formed, and in the process of expanding, some of them form new electrical connections with their neighbors. The increased number of conducting pathways results in an overall net decrease in resistance.

Palladium is good at "wetting" bare glass surfaces – it spreads across the glass in puddle-like clusters a few nanometers thick and tens of nanometers across. After pre-coating the glass with the siloxane monolayer, the Argonne scientists saw a remarkable shift in the size and spatial distribution of the palladium. Like water beading on the surface of a freshly waxed car, the palladium formed granular clusters just a few nanometers across. The gaps between neighboring palladium clusters on the siloxane-coated glass were more numerous and ten times smaller on average than the gaps between the much larger, spread-out clusters on the bare glass.

"The shorter gap distance is important for giving you a fast, sensitive response," said Tao Xu, a chemist and the first inventor of the submitted patent application on fast hydrogen sensors. Even a slight swelling of the clusters produces many more new electrical contacts between neighbors and links together many new pathways for an electrical current to travel.

The scientists also have evidence that the surface treatment of the glass reduces the adhesion – or "stiction" – between the metal and glass that hinders the expansion and contraction of the palladium nanoparticles on bare glass. This effect contributes to the increased speed of the sensor response.

The scientists spent nearly a year optimizing the procedure to make the palladium films on coated glass, and they developed a new test system that could inject hydrogen quickly enough to test the sensors on a millisecond time scale. They say their approach to making sensors is easily scalable to an industrial level. "We are using techniques that the semiconductor industry already uses," Zach said.

The sensor will be affordable too. Although palladium is an expensive precious metal, Zach estimated that the amount in each sensor is so small that the metal cost is less than a penny.

Several outstanding questions include whether the sensors can be made to withstand poisonous contaminants in the air and whether the sensors will stand up to long-term operation. Wai-Kwong Kwok, leader of the Superconductivity and Magnetism group in the Materials Science Division, expressed confidence that these issues can be handled on an engineering level. The sensors are being developed for commercial use by an industrial partner in collaboration with Argonne.

Catherine Foster | EurekAlert!
Further information:
http://www.anl.gov

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>