Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NCAR researcher sheds light on solar storms

31.05.2005


New research from the National Center for Atmospheric Research (NCAR) links a particular magnetic structure on the Sun with the genesis of powerful solar storms that can buffet Earth’s atmosphere. The research may enable scientists to create more accurate computer models of the solar storms, known as coronal mass ejections (CMEs), and could eventually point the way to forecasting the storms days before they occur. Sarah Gibson, a scientist at NCAR’s High Altitude Observatory (HAO), will present her findings at the American Geophysical Union conference in New Orleans on Thursday, May 26. Her invited talk is in recognition of winning this year’s Karen Harvey Prize. Awarded by the Solar Physics Division of the American Astronomical Society, the prize recognizes an early-career scientist who has produced exceptional solar research. CMEs are a focus of solar research because they suddenly and violently release billions of tons of matter and charged particles that escape from the Sun and speed through space. Ejections pointed toward Earth can set off disturbances when they reach the upper atmosphere, affecting satellites, ground-based communications systems, and power grids.



For her research, Gibson turned to a unique data set: white-light images of the lower reaches of the Sun’s enormous halo, called the corona. Taken by NCAR’s Mark-IV K-Coronameter on Mauna Loa in Hawaii, the images are sensitive to density alone, avoiding the ambiguity of most other solar images that depend on both temperature and density. The images revealed that lower-density regions in the corona consistent with twisted magnetic field lines can form prior to a CME. The twisted areas, known as magnetic flux ropes, store massive amounts of energy.

"The structures indicate a magnetic system that has enough energy to fuel a CME," Gibson explains. "But their presence is not, by itself, an indication that a CME is about to occur. For that, we need to look at additional characteristics."


The research may put to rest an important debate among solar physicists over whether magnetic flux ropes can form prior to an ejection or are merely present when an ejection takes place. Gibson’s findings suggest that, to understand the forces that create CMEs, solar scientists should use magnetic flux ropes as starting points for computer models of the massive storms.

To conduct her study, Gibson used Mark-IV images to observe dark, lower-density areas, known as cavities, that can be formed by the strong, sheared magnetic fields of magnetic flux ropes. She and NCAR colleagues analyzed 13 cavity systems from November 1999 to January 2004. Seven of these systems could be associated with CMEs, and four cavities were directly observed by the coronameter to erupt as CMEs. Gibson used a second technique to identify an additional eight CMEs that erupted from already-formed cavities. She found those cases by gathering images of CMEs and backtracking to see whether cavities existed at those CME sites before each eruption.

One of Gibson’s next steps will be to analyze cavities that result in CMEs to determine whether they have identifiable characteristics that may help scientists forecast a CME. Her preliminary findings indicate that a cavity begins to bulge and rise higher in the corona just before erupting. Cavities may also darken and become more sharply defined prior to eruption.

Gibson will also try to determine how widespread cavities are, and if it is possible that most, or even all, CMEs are preceded by the formation of magnetic flux ropes. Beginning next year, she will supplement the Mauna Loa observations with data from a pair of new NASA satellites, known as STEREO (Solar Terrestrial Relations Observatory). Instruments aboard STEREO will provide stereoscopic measurements and 24-hour coverage of the lower solar corona, significantly increasing the chances of directly observing cavities erupting into CMEs.

Anatta | EurekAlert!
Further information:
http://www.ucar.edu

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>