Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NCAR researcher sheds light on solar storms

31.05.2005


New research from the National Center for Atmospheric Research (NCAR) links a particular magnetic structure on the Sun with the genesis of powerful solar storms that can buffet Earth’s atmosphere. The research may enable scientists to create more accurate computer models of the solar storms, known as coronal mass ejections (CMEs), and could eventually point the way to forecasting the storms days before they occur. Sarah Gibson, a scientist at NCAR’s High Altitude Observatory (HAO), will present her findings at the American Geophysical Union conference in New Orleans on Thursday, May 26. Her invited talk is in recognition of winning this year’s Karen Harvey Prize. Awarded by the Solar Physics Division of the American Astronomical Society, the prize recognizes an early-career scientist who has produced exceptional solar research. CMEs are a focus of solar research because they suddenly and violently release billions of tons of matter and charged particles that escape from the Sun and speed through space. Ejections pointed toward Earth can set off disturbances when they reach the upper atmosphere, affecting satellites, ground-based communications systems, and power grids.



For her research, Gibson turned to a unique data set: white-light images of the lower reaches of the Sun’s enormous halo, called the corona. Taken by NCAR’s Mark-IV K-Coronameter on Mauna Loa in Hawaii, the images are sensitive to density alone, avoiding the ambiguity of most other solar images that depend on both temperature and density. The images revealed that lower-density regions in the corona consistent with twisted magnetic field lines can form prior to a CME. The twisted areas, known as magnetic flux ropes, store massive amounts of energy.

"The structures indicate a magnetic system that has enough energy to fuel a CME," Gibson explains. "But their presence is not, by itself, an indication that a CME is about to occur. For that, we need to look at additional characteristics."


The research may put to rest an important debate among solar physicists over whether magnetic flux ropes can form prior to an ejection or are merely present when an ejection takes place. Gibson’s findings suggest that, to understand the forces that create CMEs, solar scientists should use magnetic flux ropes as starting points for computer models of the massive storms.

To conduct her study, Gibson used Mark-IV images to observe dark, lower-density areas, known as cavities, that can be formed by the strong, sheared magnetic fields of magnetic flux ropes. She and NCAR colleagues analyzed 13 cavity systems from November 1999 to January 2004. Seven of these systems could be associated with CMEs, and four cavities were directly observed by the coronameter to erupt as CMEs. Gibson used a second technique to identify an additional eight CMEs that erupted from already-formed cavities. She found those cases by gathering images of CMEs and backtracking to see whether cavities existed at those CME sites before each eruption.

One of Gibson’s next steps will be to analyze cavities that result in CMEs to determine whether they have identifiable characteristics that may help scientists forecast a CME. Her preliminary findings indicate that a cavity begins to bulge and rise higher in the corona just before erupting. Cavities may also darken and become more sharply defined prior to eruption.

Gibson will also try to determine how widespread cavities are, and if it is possible that most, or even all, CMEs are preceded by the formation of magnetic flux ropes. Beginning next year, she will supplement the Mauna Loa observations with data from a pair of new NASA satellites, known as STEREO (Solar Terrestrial Relations Observatory). Instruments aboard STEREO will provide stereoscopic measurements and 24-hour coverage of the lower solar corona, significantly increasing the chances of directly observing cavities erupting into CMEs.

Anatta | EurekAlert!
Further information:
http://www.ucar.edu

More articles from Physics and Astronomy:

nachricht Magnetic nano-imaging on a table top
20.04.2018 | Georg-August-Universität Göttingen

nachricht New record on squeezing light to one atom: Atomic Lego guides light below one nanometer
20.04.2018 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>