Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Preparing for impact

31.05.2005


On 4 July 2005, the NASA Deep Impact spacecraft will visit Comet 9P/Tempel 1. It will launch a 370 kg impactor probe that should produce a crater on the surface of the comet and a plume of gas, dust and ejected material.



Although dramatic images of the impact may be sent to Earth in near-real time by the Deep Impact spacecraft and its impactor, the spacecraft themselves have limited remote sensing capability. The parent spacecraft will observe the impact from 500 kilometres distance, and then turn to look at the other side of the nucleus, but most of the observations of the event will be carried out by other spacecraft and from Earth.

For this reason, a worldwide network of observers, both professional and amateur, is part of the Deep Impact project. Within the global network of space and Earth telescopes for this unprecedented astronomical event, Europe plays a significant role.


Two ESA spacecraft, ESA’s Rosetta comet-chaser and its XMM-Newton space observatory, together with the NASA/ESA Hubble Space Telescope, will monitor the comet before impact, and then watch the impact and its aftermath.

ESO’s Very Large Telescope (VLT) facilities in Chile will observe the event in a big observation campaign. ESA’s optical ground station at Tenerife, Spain, will also look at the impact.

Rosetta is in the most privileged position in space to watch this unique event, and will be able to monitor the comet continuously over an extended period.

Rosetta is likely to be one of the key observatories of this event because of its set of powerful remote-sensing instruments.

The Deep Impact experiment will be the first opportunity in time to study the crust and the interior of a comet. As the material inside the comet’s nucleus is pristine, it will reveal new information on the early phases of the Solar System.

It will also provide scientists with new insight on the physics of craters formation, and thereby give a better understanding on the crater record on comets and other bodies in the Solar System.

The scientific outcome of the experiment depends crucially on pre-impact and follow-up observations. Before the impact, it is necessary to find out as much about the comet as possible, such as size, albedo (reflectivity) and rotation period.

It is essential to have a good set of observations before the impact to unambiguously distinguish the effects of the impact from the natural activity of the comet.

Due to the currently limited understanding of the structure of these dirty ‘snowballs,’ it is not known what the effect of the impact will be. Some scientists predict the ejection of a plume and the creation of a football stadium sized crater. Others think that the comet could simply swallow the impactor with hardly any visible effect, or that it may eventually break up.

To prepare for the Deep Impact event, two teams of astronomers have already used ESO’s telescopes over several months to do pre-impact monitoring, taking images and spectra of the comet both in the visible and mid-infrared wavebands.

These teams make observations typically once per month, using either the 3.6m or the 3.5m New Technology Telescope (NTT) telescopes at La Silla.

ESO’s telescopes will also be used in the post-impact observations. As soon as the comet is visible after the impact from Chile, all major ESO telescopes – the four Unit Telescopes of the Very Large Telescope Array at Paranal, as well as the 3.6m, 3.5m NTT and the 2.2m ESO/MPG telescopes at La Silla – will be observing Tempel 1, in very close collaboration with ESA and the space mission’s scientific team.

Gerhard Schwehm | alfa
Further information:
http://www.esa.int/SPECIALS/Rosetta/SEM8PE0DU8E_0.html
http://www.esa.int

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>