Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green light for Lazio - Sirad

14.04.2005


The experiment on the International Space Station that will chase earthquakes



Lazio-Sirad is ready to gather data. The experiment is installed on the International Space Station and its aim is to trace the slight variations of the so-called Van Allen belts that seem to occur before earthquakes.

At the same time the experiment will gather data that will make possible the development of techniques of protection from radiation for astronauts. The astronaut Roberto Vittori will carry out measures. He will leave for the International Space Station tomorrow April 15th and he will reach it after about 2 days. Lazio-Sirad was developed by the Infn sections and by the Universities of Perugia, Rome "Tor Vergata" and Rome Tre, in collaboration with the Infn National Laboratories of Frascati, the Serms University Laboratory of Terni, the MePhi Institute of Moscow, the Ferrari Bsn, Nergal and Airtec with the participation of Filas (Lazio Region).


Our planet is incessantly bombarded with a rain of cosmic rays, charged stable particles, such as protons and electrons. This flux is partly prevented by the Earth magnetic field, that traps a part of it out of atmosphere, to a height of hundred up to thousand kilometres. The distribution of these particles is not though homogeneous: they place themselves in areas called Van Allen belts, after the name of the American physicist that discovered their existence in 1958. In whole, the Van Allen belts behave like a huge antenna, sensitive to the slightest variation of the Earth magnetic field. The surprising aspect is that preliminary measures gathered by Russian and American researchers in more than 15 years and analyzed in details by Russian and Italian researchers, indicate that this natural antenna is able to reveal precursory phenomena of intense earthquakes four or five hours in advance. The Lazio-Sirad experiment is the first sensor planned with the aim of verifying such a hypothesis in the Space, and it is clear the interest of such researches in a country exposed to seismic risk like Italy.

In which way can the Earth’s crust tensions reflect on the cosmic particles trapped out of atmosphere? It was observed, trough measures realized at earth, that from the area of a future earthquake, electromagnetic waves of different frequency are generated in the underground: among these, low-frequency waves can reach atmosphere, cross it and interact with the particles trapped in the Van Allen belts. In this way, it is possible to produce rapid variations of the charged particles flux: measuring these variations it would be possible to state the area in which the emission of low-frequency waves occurred and so state where an earthquake is taking place.

"In order to study the interaction between the Van Allen belts and geophysics phenomena as the seismic events, Lazio-Sirad uses sophisticated and innovative particles detectors based on the use of silica and scintillating plastics. The measure of the particles trapped in the Van Allen belts will be related to the magnetic field measurements made through a precision magnetometer, called Egle, part itself of Lazio-Sirad programme. Once the physics principal of the instrumentation and its functioning in orbit will be verified, it will possible to open way to new Earth monitoring methods using not expensive micro-satellites", explains Roberto Battiston, director of the Infn section in Perugia, who coordinated the realization of Lazio-Sirad project, in close collaboration with Piergiorgio Picozza, director of the Infn section of Roma Tor Vergata, and with Vittorio Sgrigna, physics professor at the University of Roma Tre and spokesman of the Egle magnetometer.

In this circumstance the experiment Sileye3/Alteino, brought on board of the International Space Station just by Roberto Vittori during his previous mission "Marco Polo", will be put back into service. "The experiment Sileye3/Alteino is particularly important to develop new materials and new technologies to protect man from bombing of cosmic particles during future lunar and interplanetary missions", explains Piergiorgio Picozza, who participated in Lazio-Sirad coordination and is also spokesman of the Sileye3/Alteino experiment.

"The Lazio-Sirad experiment has another important goal: to improve the study on the phenomenon of the light flashes, observed by the astronauts on board of the Mir and of the International Space Station, by analysing, in particular, the interaction between the different kinds of cosmic rays and the astronauts’ visual apparatus", explains Marco Casolino of the Infn section of Roma Tor Vergata, spokesman for the Lazio-Sirad part dedicated to the study of the light flashes.

Lazio-Sirad will work at least for six months since the beginning of the operations of data acquisition. The first results of the data analysis are foreseen by the end of 2005. Lazio-Sirad has involved about 30 persons, among these: physicists, geophysicists, engineers and technicians from the different institutes that have participated. The instrument has been realized in a very short time (less than 6 months since the beginning of the project to the delivery to the Russian Space Agency on January the 25th) respecting all the complex security procedures, verification and space qualification required by the European Space Agency (Esa) and by the Russian Space Agency (Energia).

The project takes place in the context of the European mission Eneide, born from the collaboration between the Italian region Lazio, the Military Aeronautics, Alenia Spazio, the Chamber of Commerce of Rome, Esa, and Asi. The Eneide mission will start tomorrow April the 15th from the space polygon in Baikonur, in Kazakhistan, and it will travel on board of the Russian capsule Soyuz Tma, directed to the International Space Station. All the scientific experiments of Eneide mission will be managed from the control centre "Lazio user Centre", already working and settled in the Infn section of Roma Tor Vergata.

Roberto Battiston | EurekAlert!
Further information:
http://www.infn.it

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>