Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exotic physics finds black holes could be most ’perfect,’ low-viscosity fluid

22.03.2005


In three spatial dimensions, it is a close relative of the quark-gluon plasma, the super-hot state of matter that hasn’t existed since the tiniest fraction of a second after the big bang that started the universe. When viewed in 10 dimensions, the minimum number prescribed by what physicists call "string theory," it is a black hole.



No matter what you call it, though, that substance and others similar to it could be the most-perfect fluids in existence because they have ultra-low viscosity, or resistance to flow, said Dam Thanh Son, an associate physics professor in the Institute for Nuclear Theory at the University of Washington.

Son and two colleagues used a string theory method called the gauge/gravity duality to determine that a black hole in 10 dimensions – or the holographic image of a black hole, a quark-gluon plasma, in three spatial dimensions – behaves as if it has a viscosity near zero, the lowest yet measured.


It is easy to see the difference in viscosity between a jar of honey or molasses at room temperature and a glass of water. The honey is much thicker and more viscous, and it pours very slowly compared with the water.

Using string theory as a measuring tool, Son and colleagues Pavlo Kovtun of the University of California, Santa Barbara, and Andrei Starinets of the Perimeter Institute for Theoretical Physics in Waterloo, Ontario, have found that water is 400 times more viscous than black hole fluid having the same number of particles per cubic inch.

"One can ’stir up’ the black hole, and it will wiggle for some time," Son said. "After awhile it comes back to rest in exactly the same way as when you have stirred a cup of water – the water moves for awhile and then slows and stops. Viscosity is a reason why water stops. Similarly, one can associate viscosity with a black hole, and the viscosity is the reason it eventually stops moving after having been stirred."

A paper describing the use of string theory to compute black hole viscosity is scheduled for publication in the March 25 edition of Physical Review Letters, a journal of the American Physical Society. The work is supported by grants from the U.S. Department of Energy, the National Science Foundation and the Alfred P. Sloan Foundation.

Physicists for years have used string theory to unify forces of nature – gravity and electromagnetism, for example – when observations involving one force cannot be reconciled with those involving another force.

In string theory, elementary particles are described as small one-dimensional objects called strings, rather than simple points that do not occupy a dimension. But string theory requires at least six dimensions beyond the four in which humans traditionally think and function – three spatial dimensions plus time, often referred to as space-time. Most of those extra dimensions are thought to be very tiny, yet they can have measurable effects on the other dimensions.

To be comparable to the quark-gluon plasma, a black hole’s temperature should be about 2 trillion degrees Celsius. At such extreme heat, it is not surprising that it might evaporate like other liquids. That is exactly what happens to black holes in three spatial dimensions, according to a well-accepted theory of particle radiation from black holes by physicist Stephen Hawking.

But in the 10 dimensions of string theory, the fluid of a black hole isn’t like other fluids. Space-time is considered to be flat in our perception, Son said, and five of the extra dimensions are compacted into a small, finite sphere. In the remaining dimension, however, space is curved. Evaporation doesn’t occur in this dimension, he said, because as particles radiate from the fluid they strike the curved edge of the dimension and are sent bouncing back into the black hole.

While a black hole’s extreme temperature, among other things, would make it a decidedly inhospitable place for humans, its extremely low viscosity would make swimming in it a breeze. But Son noted that the smaller an organism is, the more viscous a fluid would appear to be.

"For bacteria, swimming in water must be like humans trying to swim in honey," he said.

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Physics and Astronomy:

nachricht Applicability of dynamic facilitation theory to binary hard disk systems
08.12.2016 | Nagoya Institute of Technology

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>