Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exotic physics finds black holes could be most ’perfect,’ low-viscosity fluid

22.03.2005


In three spatial dimensions, it is a close relative of the quark-gluon plasma, the super-hot state of matter that hasn’t existed since the tiniest fraction of a second after the big bang that started the universe. When viewed in 10 dimensions, the minimum number prescribed by what physicists call "string theory," it is a black hole.



No matter what you call it, though, that substance and others similar to it could be the most-perfect fluids in existence because they have ultra-low viscosity, or resistance to flow, said Dam Thanh Son, an associate physics professor in the Institute for Nuclear Theory at the University of Washington.

Son and two colleagues used a string theory method called the gauge/gravity duality to determine that a black hole in 10 dimensions – or the holographic image of a black hole, a quark-gluon plasma, in three spatial dimensions – behaves as if it has a viscosity near zero, the lowest yet measured.


It is easy to see the difference in viscosity between a jar of honey or molasses at room temperature and a glass of water. The honey is much thicker and more viscous, and it pours very slowly compared with the water.

Using string theory as a measuring tool, Son and colleagues Pavlo Kovtun of the University of California, Santa Barbara, and Andrei Starinets of the Perimeter Institute for Theoretical Physics in Waterloo, Ontario, have found that water is 400 times more viscous than black hole fluid having the same number of particles per cubic inch.

"One can ’stir up’ the black hole, and it will wiggle for some time," Son said. "After awhile it comes back to rest in exactly the same way as when you have stirred a cup of water – the water moves for awhile and then slows and stops. Viscosity is a reason why water stops. Similarly, one can associate viscosity with a black hole, and the viscosity is the reason it eventually stops moving after having been stirred."

A paper describing the use of string theory to compute black hole viscosity is scheduled for publication in the March 25 edition of Physical Review Letters, a journal of the American Physical Society. The work is supported by grants from the U.S. Department of Energy, the National Science Foundation and the Alfred P. Sloan Foundation.

Physicists for years have used string theory to unify forces of nature – gravity and electromagnetism, for example – when observations involving one force cannot be reconciled with those involving another force.

In string theory, elementary particles are described as small one-dimensional objects called strings, rather than simple points that do not occupy a dimension. But string theory requires at least six dimensions beyond the four in which humans traditionally think and function – three spatial dimensions plus time, often referred to as space-time. Most of those extra dimensions are thought to be very tiny, yet they can have measurable effects on the other dimensions.

To be comparable to the quark-gluon plasma, a black hole’s temperature should be about 2 trillion degrees Celsius. At such extreme heat, it is not surprising that it might evaporate like other liquids. That is exactly what happens to black holes in three spatial dimensions, according to a well-accepted theory of particle radiation from black holes by physicist Stephen Hawking.

But in the 10 dimensions of string theory, the fluid of a black hole isn’t like other fluids. Space-time is considered to be flat in our perception, Son said, and five of the extra dimensions are compacted into a small, finite sphere. In the remaining dimension, however, space is curved. Evaporation doesn’t occur in this dimension, he said, because as particles radiate from the fluid they strike the curved edge of the dimension and are sent bouncing back into the black hole.

While a black hole’s extreme temperature, among other things, would make it a decidedly inhospitable place for humans, its extremely low viscosity would make swimming in it a breeze. But Son noted that the smaller an organism is, the more viscous a fluid would appear to be.

"For bacteria, swimming in water must be like humans trying to swim in honey," he said.

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>