Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exotic physics finds black holes could be most ’perfect,’ low-viscosity fluid

22.03.2005


In three spatial dimensions, it is a close relative of the quark-gluon plasma, the super-hot state of matter that hasn’t existed since the tiniest fraction of a second after the big bang that started the universe. When viewed in 10 dimensions, the minimum number prescribed by what physicists call "string theory," it is a black hole.



No matter what you call it, though, that substance and others similar to it could be the most-perfect fluids in existence because they have ultra-low viscosity, or resistance to flow, said Dam Thanh Son, an associate physics professor in the Institute for Nuclear Theory at the University of Washington.

Son and two colleagues used a string theory method called the gauge/gravity duality to determine that a black hole in 10 dimensions – or the holographic image of a black hole, a quark-gluon plasma, in three spatial dimensions – behaves as if it has a viscosity near zero, the lowest yet measured.


It is easy to see the difference in viscosity between a jar of honey or molasses at room temperature and a glass of water. The honey is much thicker and more viscous, and it pours very slowly compared with the water.

Using string theory as a measuring tool, Son and colleagues Pavlo Kovtun of the University of California, Santa Barbara, and Andrei Starinets of the Perimeter Institute for Theoretical Physics in Waterloo, Ontario, have found that water is 400 times more viscous than black hole fluid having the same number of particles per cubic inch.

"One can ’stir up’ the black hole, and it will wiggle for some time," Son said. "After awhile it comes back to rest in exactly the same way as when you have stirred a cup of water – the water moves for awhile and then slows and stops. Viscosity is a reason why water stops. Similarly, one can associate viscosity with a black hole, and the viscosity is the reason it eventually stops moving after having been stirred."

A paper describing the use of string theory to compute black hole viscosity is scheduled for publication in the March 25 edition of Physical Review Letters, a journal of the American Physical Society. The work is supported by grants from the U.S. Department of Energy, the National Science Foundation and the Alfred P. Sloan Foundation.

Physicists for years have used string theory to unify forces of nature – gravity and electromagnetism, for example – when observations involving one force cannot be reconciled with those involving another force.

In string theory, elementary particles are described as small one-dimensional objects called strings, rather than simple points that do not occupy a dimension. But string theory requires at least six dimensions beyond the four in which humans traditionally think and function – three spatial dimensions plus time, often referred to as space-time. Most of those extra dimensions are thought to be very tiny, yet they can have measurable effects on the other dimensions.

To be comparable to the quark-gluon plasma, a black hole’s temperature should be about 2 trillion degrees Celsius. At such extreme heat, it is not surprising that it might evaporate like other liquids. That is exactly what happens to black holes in three spatial dimensions, according to a well-accepted theory of particle radiation from black holes by physicist Stephen Hawking.

But in the 10 dimensions of string theory, the fluid of a black hole isn’t like other fluids. Space-time is considered to be flat in our perception, Son said, and five of the extra dimensions are compacted into a small, finite sphere. In the remaining dimension, however, space is curved. Evaporation doesn’t occur in this dimension, he said, because as particles radiate from the fluid they strike the curved edge of the dimension and are sent bouncing back into the black hole.

While a black hole’s extreme temperature, among other things, would make it a decidedly inhospitable place for humans, its extremely low viscosity would make swimming in it a breeze. But Son noted that the smaller an organism is, the more viscous a fluid would appear to be.

"For bacteria, swimming in water must be like humans trying to swim in honey," he said.

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Physics and Astronomy:

nachricht New type of smart windows use liquid to switch from clear to reflective
14.12.2017 | The Optical Society

nachricht New ultra-thin diamond membrane is a radiobiologist's best friend
14.12.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>