Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn astrophysicist outlines a multi-pronged approach in the hunt for dark energy

21.02.2005


For the last few years evidence that we are living on a very "weird" universe has been growing: the expansion of the universe is accelerating, and one theory proposed to account for this acceleration is what has been termed "dark energy."

In order to find out what this mysterious energy really is, astronomers need to compare astrophysical observations that are at first sight completely unrelated. At a session on dark energy at the Annual Meeting of the American Association for the Advancement of Science today, University of Pennsylvania astrophysicist Licia Verde outlines how the hunt for dark energy will draw on the avalanche of recent and forthcoming data on surveys of objects throughout the universe.

"We were just coming to grips with ’dark matter’ when, out of the blue, observations tells us that something is propelling the universe apart and that this something comprises about 73 percent of existence," said Verde, an assistant professor in Penn’s Department of Physics and Astronomy. "Unlike dark matter, which, as mysterious as it may be, is still matter, dark energy is ’dark’ only because astronomers simply do not know what it is. At the heart of the dilemma, however, hides the answer to just what all this universe stuff is made from anyway."



For example, some clues to the nature of dark energy have been obtained by comparing the state of the universe at its birth – as depicted in the Cosmic Microwave Background experiments – with how it exists today, using data taken from galaxy surveys. One of the first sources of data will come from the ongoing series of surveys that look at the state of galaxies today and other celestial objects which we see as they were few billion years ago.

These observations become even more powerful in combination with observations of the Cosmic Microwave Background, which provide a look at the young universe by measuring the residue of the Big Bang itself. If dark energy changes the way the universe expands, the distance between galaxies and the CMB and the time elapsed between the CMB and the era of galaxies must carry some clues about dark energy, left behind like fingerprints on space-time.

"If you think of the universe as a great sea, where space is water, over time gravity, like the wind, made ripples in that water that turned into waves. That’s the universe today, a surfer’s paradise," Verde said. "Of course, a surfer would end up in a different place if you changed the composition of water or if you let the wind blow longer. Likewise, the position and the properties of the galaxies today tell us something about how they surfed there and the composition of the universe that took them there.

"We’re drawing on data compiled from astronomers across the globe in surveys of galaxies, supernovae, clusters of galaxies and other objects in space from as many different viewpoints as possible," Verde said. "Part of the difficulty studying dark energy is that we are still not sure what we are looking for, so we are looking to seemingly unrelated sources that might tell us something about the properties of dark energy.

According to Verde, if these approaches fail, it could mean that the current mode of thinking about the universe is wrong. If it turns out that dark energy does not exist after all, it would be the cause of a basic re-thinking of our understanding of astrophysics. "Finding out about the nature of dark energy will have consequences for both astronomy and fundamental physics," Verde said. "In other words, the question of dark energy cannot be answered without connecting the cosmological properties of the universe to the fundamental properties of matter on the subatomic level – from the infinitely small to the infinitely big."

Greg Lester | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>