Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn astrophysicist outlines a multi-pronged approach in the hunt for dark energy

21.02.2005


For the last few years evidence that we are living on a very "weird" universe has been growing: the expansion of the universe is accelerating, and one theory proposed to account for this acceleration is what has been termed "dark energy."

In order to find out what this mysterious energy really is, astronomers need to compare astrophysical observations that are at first sight completely unrelated. At a session on dark energy at the Annual Meeting of the American Association for the Advancement of Science today, University of Pennsylvania astrophysicist Licia Verde outlines how the hunt for dark energy will draw on the avalanche of recent and forthcoming data on surveys of objects throughout the universe.

"We were just coming to grips with ’dark matter’ when, out of the blue, observations tells us that something is propelling the universe apart and that this something comprises about 73 percent of existence," said Verde, an assistant professor in Penn’s Department of Physics and Astronomy. "Unlike dark matter, which, as mysterious as it may be, is still matter, dark energy is ’dark’ only because astronomers simply do not know what it is. At the heart of the dilemma, however, hides the answer to just what all this universe stuff is made from anyway."



For example, some clues to the nature of dark energy have been obtained by comparing the state of the universe at its birth – as depicted in the Cosmic Microwave Background experiments – with how it exists today, using data taken from galaxy surveys. One of the first sources of data will come from the ongoing series of surveys that look at the state of galaxies today and other celestial objects which we see as they were few billion years ago.

These observations become even more powerful in combination with observations of the Cosmic Microwave Background, which provide a look at the young universe by measuring the residue of the Big Bang itself. If dark energy changes the way the universe expands, the distance between galaxies and the CMB and the time elapsed between the CMB and the era of galaxies must carry some clues about dark energy, left behind like fingerprints on space-time.

"If you think of the universe as a great sea, where space is water, over time gravity, like the wind, made ripples in that water that turned into waves. That’s the universe today, a surfer’s paradise," Verde said. "Of course, a surfer would end up in a different place if you changed the composition of water or if you let the wind blow longer. Likewise, the position and the properties of the galaxies today tell us something about how they surfed there and the composition of the universe that took them there.

"We’re drawing on data compiled from astronomers across the globe in surveys of galaxies, supernovae, clusters of galaxies and other objects in space from as many different viewpoints as possible," Verde said. "Part of the difficulty studying dark energy is that we are still not sure what we are looking for, so we are looking to seemingly unrelated sources that might tell us something about the properties of dark energy.

According to Verde, if these approaches fail, it could mean that the current mode of thinking about the universe is wrong. If it turns out that dark energy does not exist after all, it would be the cause of a basic re-thinking of our understanding of astrophysics. "Finding out about the nature of dark energy will have consequences for both astronomy and fundamental physics," Verde said. "In other words, the question of dark energy cannot be answered without connecting the cosmological properties of the universe to the fundamental properties of matter on the subatomic level – from the infinitely small to the infinitely big."

Greg Lester | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Physics and Astronomy:

nachricht Mars 2020 mission to use smart methods to seek signs of past life
17.08.2017 | Goldschmidt Conference

nachricht Gold shines through properties of nano biosensors
17.08.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>