Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn astrophysicist outlines a multi-pronged approach in the hunt for dark energy

21.02.2005


For the last few years evidence that we are living on a very "weird" universe has been growing: the expansion of the universe is accelerating, and one theory proposed to account for this acceleration is what has been termed "dark energy."

In order to find out what this mysterious energy really is, astronomers need to compare astrophysical observations that are at first sight completely unrelated. At a session on dark energy at the Annual Meeting of the American Association for the Advancement of Science today, University of Pennsylvania astrophysicist Licia Verde outlines how the hunt for dark energy will draw on the avalanche of recent and forthcoming data on surveys of objects throughout the universe.

"We were just coming to grips with ’dark matter’ when, out of the blue, observations tells us that something is propelling the universe apart and that this something comprises about 73 percent of existence," said Verde, an assistant professor in Penn’s Department of Physics and Astronomy. "Unlike dark matter, which, as mysterious as it may be, is still matter, dark energy is ’dark’ only because astronomers simply do not know what it is. At the heart of the dilemma, however, hides the answer to just what all this universe stuff is made from anyway."



For example, some clues to the nature of dark energy have been obtained by comparing the state of the universe at its birth – as depicted in the Cosmic Microwave Background experiments – with how it exists today, using data taken from galaxy surveys. One of the first sources of data will come from the ongoing series of surveys that look at the state of galaxies today and other celestial objects which we see as they were few billion years ago.

These observations become even more powerful in combination with observations of the Cosmic Microwave Background, which provide a look at the young universe by measuring the residue of the Big Bang itself. If dark energy changes the way the universe expands, the distance between galaxies and the CMB and the time elapsed between the CMB and the era of galaxies must carry some clues about dark energy, left behind like fingerprints on space-time.

"If you think of the universe as a great sea, where space is water, over time gravity, like the wind, made ripples in that water that turned into waves. That’s the universe today, a surfer’s paradise," Verde said. "Of course, a surfer would end up in a different place if you changed the composition of water or if you let the wind blow longer. Likewise, the position and the properties of the galaxies today tell us something about how they surfed there and the composition of the universe that took them there.

"We’re drawing on data compiled from astronomers across the globe in surveys of galaxies, supernovae, clusters of galaxies and other objects in space from as many different viewpoints as possible," Verde said. "Part of the difficulty studying dark energy is that we are still not sure what we are looking for, so we are looking to seemingly unrelated sources that might tell us something about the properties of dark energy.

According to Verde, if these approaches fail, it could mean that the current mode of thinking about the universe is wrong. If it turns out that dark energy does not exist after all, it would be the cause of a basic re-thinking of our understanding of astrophysics. "Finding out about the nature of dark energy will have consequences for both astronomy and fundamental physics," Verde said. "In other words, the question of dark energy cannot be answered without connecting the cosmological properties of the universe to the fundamental properties of matter on the subatomic level – from the infinitely small to the infinitely big."

Greg Lester | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Physics and Astronomy:

nachricht New type of smart windows use liquid to switch from clear to reflective
14.12.2017 | The Optical Society

nachricht New ultra-thin diamond membrane is a radiobiologist's best friend
14.12.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>