Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New satellite observations reveal surprising features of mysterious gamma-ray blasts from Earth

18.02.2005


A particle accelerator operates in Earth’s upper atmosphere above major thunderstorms at energies comparable to some of the most exotic environments in the universe, according to new satellite observations of terrestrial gamma-ray flashes.



Terrestrial gamma-ray flashes (TGFs) are very short blasts of gamma rays, lasting about one millisecond, that are emitted into space from Earth’s upper atmosphere. The gamma rays are thought to be emitted by electrons traveling at near the speed of light when they scatter off of atoms and decelerate in the upper atmosphere. TGFs were first discovered in 1994 by the Burst and Transient Source Experiment (BATSE) on the Compton Gamma-Ray Observatory.

BATSE could only detect TGFs in a special observing mode and was limited in its ability to count them or measure their peak energies. New observations from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) satellite raise the maximum recorded energy of TGFs by a factor of ten and indicate that the Earth gives off about 50 TGFs every day, and possibly many more. The findings are reported in the February 18 issue of Science by a team of researchers from the University of California, Santa Cruz, UC Berkeley, and the University of British Columbia (UBC). "The idea that the Earth, a fairly small and tame planet, can be an accelerator of particles to ultrarelativistic energies is fascinating to me," said David Smith, an assistant professor of physics at UC Santa Cruz and first author of the paper. "The energies we see are as high as those of gamma rays emitted from black holes and neutron stars," Smith said.


The exact mechanism that accerates the electron beams to produce TGFs is still uncertain, he said, but it probably involves the build-up of electric charge at the tops of thunder clouds due to lightning discharges, resulting in a powerful electric field between the cloudtops and the ionosphere, the outer layer of Earth’s atmosphere. "Regardless of the exact mechanism, there is some enormous particle accelerator in the upper atmosphere that is accelerating electrons to these very high energies, so they emit gamma rays when they hit the sparse atoms of the upper atmosphere," Smith said. "What’s exciting is that we are now getting data good enough for the theorists to really test their models."

TGFs have been correlated with lightning strikes and may be related to visible phenomena that occur in the upper atmosphere over thunderstorms, such as red sprites and blue jets. Just how these various phenomena are related is a question the RHESSI investigators plan to pursue in collaboration with other researchers around the world, Smith said.

The Science paper presents the first analysis of RHESSI data for TGFs. RHESSI, a NASA Small Explorer spacecraft, was launched in 2002 to study x-rays and gamma-rays from solar flares. But RHESSI’s detectors pick up gamma rays from a variety of sources. Smith worked with RHESSI principal investigator Robert Lin at UC Berkeley and Christopher Barrington-Leigh, now at UBC, to plan ways they could use the satellite for a range of investigations in addition to studying solar flares.

Liliana Lopez, a UC Berkeley undergraduate, has been working with Smith to analyze the RHESSI data for TGFs. The Science paper presents the results from a search of three months of RHESSI data, and the analysis of additional data is ongoing.

The authors estimated a global average rate of about 50 TGFs a day, but the rate could be up to 100 times higher if, as some models indicate, TGFs are emitted as narrowly focused beams that would only be detected when the satellite is directly in their path.

The duration of TGFs recorded by RHESSI ranged from 0.2 to 3.5 milliseconds. The most energetic TGF photons detected by RHESSI were in the range of 10 to 20 million electron volts (10-20 MeV), or about 300 times as energetic as medical x-rays. The electrons that emitted these gamma rays would have been traveling at 99.99 percent of the speed of light, with energies on the order of 35 MeV.

The findings raise many interesting questions, including whether the electrons that emit TGFs ultimately contribute to the high-energy electrons in Earth’s radiation belts, Smith said. "This is a very interesting process involving extreme physics right here on Earth, and if we can understand the process here it might give us insights into similar processes in less accessible parts of the universe."

Tim Stephens | EurekAlert!
Further information:
http://www.ucsc.edu

More articles from Physics and Astronomy:

nachricht Igniting a solar flare in the corona with lower-atmosphere kindling
29.03.2017 | New Jersey Institute of Technology

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>