Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers’ first direct evidence: young low-mass objects are twice as heavy as predicted

20.01.2005


Although mass is the most important property of stars, it has proved very hard to measure for the lowest mass objects in the universe. Thanks to a powerful new camera, a very rare, low-mass companion has finally been photographed.



The discovery suggests that, due to errors in the models, astronomers have overestimated the number of young "brown dwarfs" and "free floating" extrasolar planets. An international team of astronomers lead by University of Arizona Associate Professor Laird Close reports the discovery in today’s (Jan 20.) issue of Nature.

The image has allowed the team to directly measure the mass of a young, very low mass object for the first time. The object, more than 100 times fainter than its close primary star, is 93 times as massive as Jupiter -- almost twice as heavy as theory predicts it should be. Their findings challenge current ideas about the astronomical brown dwarf population and the existence of widely publicized free-floating extrasolar planets.


Brown dwarfs are objects 75 times more massive than Jupiter but not massive enough to burn as stars. If young objects identified as brown dwarfs are twice as massive as has been thought, many actually are low mass stars. Objects recently identified as ’free-floating’ planets are in turn likely just low mass brown dwarfs.

Close of the UA’s Steward Observatory and his international colleagues detected the faint, very-low-mass companion, named AB Dor C, which orbits the very young star AB Doradus A (AB Dor A) at only 2.3 times the distance between the Earth and the sun, or about the distance between the sun and the asteroids beyond Mars.

Astronomers searching for very low mass objects look at young nearby stars because low mass companion objects will be brightest when young, before they contract and cool. Astronomers had suspected since the early 1990s that well-known AB Dor A -- a star 48 light years (14.9 parsecs) from Earth and only 50 million years old -- has a low-mass companion because its position ’wobbles’ as it’s pulled by an unseen companion. But even the Hubble Space Telescope tried and failed to detect the companion because it was too faint and too close to the glare of the primary star.

Close and his colleagues from Germany (Rainer Lenzen, Wolfgang Brandner), Spain (Jose C. Guirado), Chile (Markus Hartung, Chris Lidman), and the United States (Eric Nielsen, Eric Mamajek, and Beth Biller) succeeded in photographing the elusive companion. They used Close and Lenzen’s novel high-contrast camera on the European Southern Observatory’s 8.2-meter Very Large Telescope in Chile in February 2004.

Close and Lenzen developed the new high-contrast adaptive optics camera, the NACO Simultaneous Differential Imager, or NACO SDI, for hunting extrasolar planets. The SDI camera enhances the ability of the powerful 8.2-meter VLT telescope and its existing adaptive optics system to detect faint companions that normally would be lost in the glare of the primary star.

Close and his team are the first to image a companion so faint – 120 times fainter than its star -- and so near its star. The tiny distance between the star and the faint companion (0.156 arcseconds) is the same as the width of a dime (1.5 centimeters) seen 8 miles (13 kilometers) away. Once they located the companion, they observed it at near infrared wavelengths to measure its temperature and luminosity.

"We were surprised to find that the companion was 400 degrees Celsius cooler and 2.5 times fainter than the latest models predicted," Close said.

"We used our discovery of the companion’s exact location, along with the star’s known ’wobble’, to accurately determine the companion’s mass," team member Jose Guirado said.

"Theory predicts that this low-mass, cool object would be about 50 Jupiter masses," Close said. "But theory is incorrect: This object is between 88-98 Jupiter masses. This discovery will force astronomers to rethink what masses of the smallest objects produced in nature really are."

"Objects like AB Dor C are very rare," Wolfgang Brandner said. "Only one percent of stars have close very low mass companions -- and only about one percent of nearby stars are young. Hence, we are very lucky to be able to accurately measure the mass of even a single low mass companion that is accurately known to be young."

The NACO SDI camera is a unique type of camera using adaptive optics, which removes the blurring effects of Earth’s atmosphere to produce extremely shape images. SDI splits light from a single star into four identical images, then passes the resulting beams through four slightly different methane-sensitive filters. When the filtered light beams hit the camera’s detector array, astronomers can subtract the images so the bright star disappears, revealing a fainter, lower-mass methane-rich object otherwise hidden in the star’s scattered light halo.

The National Science Foundation awarded Close a prestigious 5-year, $545,000 Faculty Early Career Development award that supports his search for extrasolar planets using SDI cameras on the European Southern Observatory’s 8.2-meter VLT in Chile and on the UA/Smithsonian 6.5-meter MMT on Mount Hopkins, Ariz. This research was also supported by NASA.

Authors of the Jan. 20 Nature letter, "A dynamical calibration of the mass-luminosity relation at very low stellar masses and young ages," are: Laird Close of the UA Steward Observatory, Rainer Lenzen of the Max Planck Institute for Astronomy in Heidelberg, Jose C. Guirado of the University of Valencia (Spain), Eric L. Nielsen of UA Steward Observatory, Eric E. Mamajek of the Harvard-Smithsonian Center for Astrophysics, Wolfgang Brandner of the Max Planck Institute for Astronomy in Heidelberg, Markus Hartung and Chris Lindman of the European Southern Observatory (Chile), and Beth Biller of the UA Steward Observatory.

Laird M. Close | EurekAlert!
Further information:
http://www.arizona.edu

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>