Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Substructure maps show that dark matter clumps in galaxies

07.01.2005


Hubble Space Telescope data, analyzed by a Yale astronomer using gravitational lensing techniques, has generated a spatial map demonstrating the clumped substructure of dark matter inside clusters of galaxies.


Gravitational lensing image of galaxies (yellow to red) and haloes from clumped dark matter (blue)"



Clusters of galaxies (about a million, million times the mass of our sun), are typically made up of hundreds of galaxies bound together by gravity. About 90 percent of their mass is dark matter. The rest is ordinary atoms in the form of hot gas and stars.

Although little is known about it, cold dark matter is thought to have structure at all magnitudes. Theoretical models of the clumping properties were derived from detailed, high resolution simulations of the growth of structure in the Universe. Although previous evidence supported the "concordance model" of a Universe mostly composed of cold, dark matter, the predicted substructure had never been detected.


In this study, Yale assistant professor of astronomy and physics Priyamvada Natarajan and her colleagues demonstrate that, at least in the mass range of typical galaxies in clusters, there is an excellent agreement between the observations and theoretical predictions of the concordance model.

Using gravitational lensing made it possible for the observers to visualize light from distant galaxies as it bent around mass in its way. This allowed the researchers to measure light deflections that indicated structural clumps in the dark matter.

"We used an innovative technique to pick up the effect of precisely the clumps which might otherwise be obscured by the presence of more massive structures," said Natarajan. "When we compared our results with theoretical expectations of the concordance model, we found extremely good agreement, suggesting that the model passes the substructure test for the mass range we are sensitive to with this technique."

"We think the properties of these clumps hold a key to the nature of dark matter -- which is presently unknown," said Natarajan. "The question remains whether these predictions and observations agree for smaller mass clumps that are as yet undetected."

Co-author on the study, funded by Yale University, is Volker Springel, MPA, Garching, Germany. Other collaborators include.Jean-Paul Kneib, LAM - OAMP, Marseille, France, Ian Smail, University of Durham, U.K., and Richard Ellis of Caltech.

Janet Rettig Emanuel | EurekAlert!
Further information:
http://www.astro.yale.edu/priya/
http://www.astro.yale.edu/
http://www.physics.yale.edu/

More articles from Physics and Astronomy:

nachricht CCNY physicists master unexplored electron property
26.07.2017 | City College of New York

nachricht Large, distant comets more common than previously thought
26.07.2017 | University of Maryland

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Serious children’s infections also spreading in Switzerland

26.07.2017 | Health and Medicine

Biomarkers for identifying Tumor Aggressiveness

26.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>