Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chip-scale magnetic sensor draws on mini clock design

30.12.2004


A low-power, magnetic sensor about the size of a grain of rice that can detect magnetic field changes as small as 50 picoteslas--a million times weaker than the Earth’s magnetic field--has been demonstrated by researchers at the National Institute of Standards and Technology (NIST). Described in the Dec. 27 issue of Applied Physics Letters,* the device can be powered with batteries and is about 100 times smaller than current atom-based sensors with similar sensitivities, which typically weigh several kilograms (about 6 pounds).


Photo of the NIST chip-scale magnetometer. The sensor is about as tall as a grain of rice. The widest block near the top of the device is an enclosed, transparent cell that holds a vapor of rubidium atoms. Photo by Peter Schwindt/NIST



The new magnetic sensor is based on the principles of a NIST chip-scale atomic clock, announced in August 2004. Expected applications for a commercialized version of the new sensor could include hand-held devices for sensing unexploded ordnance, precision navigation, geophysical mapping to locate minerals or oil, and medical instruments.

Like the NIST chip-scale clock, the new magnetic sensor can be fabricated and assembled on semiconductor wafers using existing techniques for making microelectronics and microelectromechanical systems (MEMS). This offers the potential for low-cost mass production of sensors about the size of a computer chip. When packaged with associated electronics, the researchers believe the mini magnetometer will measure about 1 cubic centimeter or about the size of a sugar cube.


Magnetic fields are produced by the motion of electrons either in the form of an electrical current or in certain metals such as iron, cobalt and nickel. The NIST miniature magnetometer is sensitive enough to detect a concealed rifle about 12 meters (40 feet) away or a six-inch-diameter steel pipeline up to 35 meters (120 feet) underground.

The sensor works by detecting minute changes in the energy levels of electrons in the presence of a magnetic field. A tiny sample of the element rubidium is heated within a sealed, transparent cell to form a rubidium vapor. Light from a semiconductor laser is transmitted through the atomic vapor. In the presence of a magnetic field, the amount of laser light that is absorbed by the atoms changes and this is detected by a photocell. Larger magnetic fields produce proportionally bigger changes in the atomic energy levels and change the absorption by the atom.

The key advantages of the new sensor, says Peter Schwindt, one of the NIST developers, are its accuracy and sensitivity given its small size. So called "fluxgate" magnetometers achieve equivalent or better sensitivity but are much less accurate and much larger. They also detect only the portion of a magnetic field pointing along the sensor, while the atomic magnetometers detect the total field strength, a desirable capability for many magnetic imaging and search applications. Superconducting quantum interference devices (SQUIDs) are more sensitive, but must be cryogenically cooled, making them substantially larger, power hungry and more expensive. "Magnetoresistive" devices like those used in heads that read computer hard drives are small and cheap, but are typically less sensitive and less accurate. A separate NIST research group has developed a new magnetoresistive magnetic sensor.

Gail Porter | EurekAlert!
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Early organic carbon got deep burial in mantle

25.04.2017 | Earth Sciences

A room with a view - or how cultural differences matter in room size perception

25.04.2017 | Life Sciences

Warm winds: New insight into what weakens Antarctic ice shelves

25.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>