Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Control circuit for future supercomputer to be produced in Finland

08.12.2004


The circuit will improve the computational accuracy and efficiency of quantum computers operating at extremely low temperatures.



Quantum computers require an ambient temperature of approximately -273 degrees centigrade to function properly. The Technical Research Centre of Finland (VTT) is to build a control circuit for such a superconducting computer that will function at very low temperatures. Future quantum computers will be able to crack IT encryption codes and perform searches of enormous databases, which are currently impossible. The memory bits of a quantum computer may have several states simultaneously. This feature has enabled the few existing quantum computers, which although still primitive may yet achieve super efficiency in the future.

The high efficiency of a quantum computer facilitates computing far beyond the capacity of present-day equipment. For example, where current computers perform 1,000,000 searches in an unorganised database, quantum computers will perform approximately 1,000 searches, thus reducing the number by 1,000-fold. In the future the most extensive and complicated computing tasks can only be resolved with a quantum computer.


The cryogenic control circuit to be constructed at VTT will bring us one step closer to the speed and accuracy required of a quantum computer. The control circuits operate at just 0.02 degrees centigrade above absolute zero (- 273.15 degrees centigrade). Thus far quantum computers have been controlled at room temperature, which has prevented the full use of their incredible speed. In addition, unlike quantum computers, the memory bits of modern computers only have two alternative states.

The EU-funded project carried out by VTT and the Helsinki University of Technology (HUT) involves the design of an integrated circuit comprising a quantum computer prototype and its control - the first one to operate in a cold environment. This enables accurate and fast control, which is less vulnerable to disturbances than the present-day ’room temperature’ control. VTT will also build the integrated circuit, while the quantum bits will be constructed using nanotechnology (a millionth of a millimetre) techniques by the other top research teams involved in the project, including the CEA nuclear energy institute in France, the Chalmers University of Technology in Sweden and the IPHT Institute in Jena, Germany.

In connection with low-temperature quantum technology, VTT and HUT have developed a wholly new kind of charge pump. In theory, the pump has a capacity up to 1,000-fold (one nanoampere) higher than that of currently used pumps (one picoampere) without compromising accuracy. The pump developed at VTT may essentially facilitate the definition of the electro-technical current normal (current standard), in the international SI system of units, which in turn will facilitate the functional testing of industrial current meters. In addition, the new current standard is one of the three fundamental quantities in electrical engineering, and it may revolutionise the electro-technical foundation of the entire SI system.

The new pump and controlled control of the quantum computer are connected with the Doctoral dissertation of Antti Niskanen (26). The dissertation of the young VTT Research Scientist was examined at HUT on 26 November. Construction of the new control circuit at VTT is a continuation of Niskanen’s work. In 2005 Niskanen will join the quantum technology top research unit NEC in Japan as Visiting Researcher.

Antti Niskanen | alfa
Further information:
http://www.vtt.fi
http://www.vtt.fi/inf/pdf/publications/2004/P552.pdf

More articles from Physics and Astronomy:

nachricht Breaking the optical bandwidth record of stable pulsed lasers
24.01.2017 | Institut national de la recherche scientifique - INRS

nachricht European XFEL prepares for user operation: Researchers can hand in first proposals for experiments
24.01.2017 | European XFEL GmbH

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>