Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers describe how natural nuclear reactor worked

01.11.2004


To operate a nuclear power plant like Three Mile Island, hundreds of highly trained employees must work in concert to generate power from safe fission, all the while containing dangerous nuclear wastes.

On the other hand, it’s been known for 30 years that Mother Nature once did nuclear chain reactions by her lonesome. Now, Researchers at Washington University in St. Louis have analyzed the isotopic structure of noble gases produced in fission in a sample from the only known natural nuclear chain reaction site in the world in Gabon, West Africa, and have found how she does the trick. Picture Old Faithful.

Analyzing a tiny fragment of rock, less than one-eight of an inch, taken from the Gabon site, Alexander Meshik, Ph.D., Washington University senior research scientist in physics, has calculated that the precise isotopic structure of xenon in the sample reveals an operation that worked like a geyser. The reactor, active two billion years ago, worked on a 30-minute reaction cycle, accompanied by a two-and-a-half hour dormant period, or cool down.



In the Oct. 29, 2004 issue of Physical Review Letters, Meshik and his Washington University collaborators write: "This similarity (to a geyser) suggests that a half an hour after the onset of the chain reaction, unbounded water was converted to steam, decreasing the thermal neutron flux and making the reactor sub-critical. It took at least two-and-a-half hours for the reactor to cool down until fission Xe (xenon) began to retain. Then the water returned to the reactor zone, providing neutron moderation and once again establishing a self-sustaining chain."

Prior to this calculation, it was known that the natural nuclear reactor operated two billion years ago for 150 million years at an average power of 100 kilowatts. The Washington University team solved the mystery of how the reactor worked and why it didn’t blow up.

Meshik and his collaborators, Charles Hohenberg, Ph.D., Washington University professor of physics, and Olga Pravdivtseva, Ph.D., senior research scientist in physics, used a selective laser combined with sensitive, ion-counting mass spectrometry to concentrate on the sample’s moderator, a uranium-free mineral assembly of lanthanum, cerium, strontium and calcium called alumophosphate. The xenon found and analyzed provides the story of this ancient natural nuclear reactor. Meshik and his colleagues inferred from the xenon analysis the mode of operation and also the method of safely storing nuclear wastes, particularly fission xenon and krypton.

"This is very impressive, to think this natural system not only went critical, it also safely stored the waste," said Meshik. "Nature is much smarter than we are. Nature is the first genius. We have all kinds of problems with modern-day nuclear reactors. This reactor is so independent, with no electronics, no models. Just using the fact that water boiled at the reactor site might give contemporary nuclear reactor researchers ideas on how to operate more safely and efficiently."

In 1952, the late Paul Kuroda predicted that if the right conditions existed, a natural nuclear reactor system could go critical. Twenty years later, noticing that uranium ore from the Oklo mine was depleted in 235 Uranium , it was discovered that the site had once been a natural nuclear reaction system. "The big question we addressed was: When it reached criticality, why didn’t it blow up?" Meshik said. "We found the answer in the xenon."

Critical means that a fissionable material has enough mass to sustain a reaction. There were two major theories on how the reactor operated. One held that the system burned up highly neutron-absorbing impurities such as rare earth isotopes or boron, and because of that the system shut down regularly, and different parts of the reactor might have operated at different times. The other involved the role of water acting as a neutron moderator. As the temperature of the reactor went up, water was converted to steam, reducing the neutron thermalisation and shutting down the chain reaction. The chain reaction re-started only when the reactor cooled down and the water increased again.

Analysis of the xenon, the largest concentration of xenon ever found in any natural material, confirmed the water method. It also revealed the role of alumophosphate as the system’s waste absorber.

Xenon is extremely rare on earth and very characteristic of the fission process. Chemically inert, the element has nine isotopes and is abundant in many nuclear processes. "You get a big diagnostic fingerprint with xenon, and it’s easy to purify," said Hohenberg, who noted the importance of alumophosphate in the natural nuclear reactor. "More krypton 85, a major waste from modern nuclear reactors, is getting piped into the atmosphere each year," he said. "Maybe this natural mode can suggest a safer solution."

Can there be a natural nuclear reactor in actual operation today?

"Today even the largest and richest uranium deposit cannot become a reactor because the present concentration of 235 U is too low – only about 0.72 percent," said Meshik. "However, because 235 U decays much faster than 238 U, in the past, 235 U was more abundant. For example, two billion years ago 235 U was five times higher, about three percent, approximately the concentration of enriched uranium used in modern commercial reactors."

Another vital condition for self-sustaining nuclear reaction is the high content of a moderator to slow the neutrons, Meshik said. Water, carbon, most organic compounds, silicon dioxide, calcium oxide and magnesium oxide all are natural neutron moderators. Also, the concentrations of neutron absorbents – iron, potassium, beryllium, and especially gadolinium, samarium, europium, cadmium and boron – should be low.

"Only when all of these requirements are met can a self-sustaining chain reaction occur," Meshik said.

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Physics and Astronomy:

nachricht Gamma rays will reach beyond the limits of light
23.10.2017 | Chalmers University of Technology

nachricht Creation of coherent states in molecules by incoherent electrons
23.10.2017 | Tata Institute of Fundamental Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>