Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why thin, flat things rise and glide on the way down: Cornell physicists finally solve the falling-paper problem

20.10.2004


Exactly what governs the motions of falling paper?



While college students suspect the answer is known to lazy professors -- the ones who allegedly grade essays by throwing them down stairwells to see which sails the farthest -- the so-called falling paper problem has long intrigued scientists.

Now an enterprising professor and her graduate student at Cornell University have solved the falling paper problem -- in part by calculating the motions of a scientific journal page in flight -- and their report must have made the grade: The journal Physical Review Letters (Vol. 93, No. 14, "Falling Paper: Navier-Stokes Solutions, Model of Fluid Forces, and Center of Mass Elevation") article by Z. Jane Wang, associate professor of theoretical and applied mechanics, and Umberto Pesavento, a Ph.D. candidate in physics, explains it all.


The same falling-paper principles apply, the physicists believe, to naturally flat things like leaves. If they are right, Wang and Pensavento may have finally solved the mystery of why autumn leaves depart from a neighbor’s tree on a windless day . . .

. . . rise into the air . . . . . . rise again . . .

. . . glide along . . .

. . . and have to be raked from yards that don’t contain a single tree.


As Wang explains, "Leaves and paper fall and rise in a seeming chaotic manner. As they fall, air swirls up around their edges, which makes them flutter and tumble. Because the flow changes dramatically around the sharp edges of leaves and paper, known as flow singularity, it makes the prediction of the falling trajectory a challenge."

Among the first scientists to be intrigued by the behavior of falling paper was Scottish physicist James C. Maxwell, who pondered the tumbling motions of playing cards in 1853. But while Maxwell was a brilliant mathematician, he lacked the today’s computer-modeling techniques, not to mention access to fast, powerful computers. Wang and Pensavento put those advanced tools to good use to show why the falling trajectory of thin flat things -- and the behavior of airflow and other forces -- is not predicted by the classical aerodynamic theory.

"There were a few surprises," Wang notes. "We found the flat paper rises on its own as it falls, which would not happen if the force due to air is similar to that on an airfoil. Instead, the force depends strongly on the coupling between the rotating and translational motions of the object."

Wang and Pesavento also showed that the falling-paper effect is almost twice as effective for slowing an object’s descent, compared with the parachute effect (that is, if an object falls straight down). And that evidently benefits trees and other plants that need to disperse seeds some distance from the point of origin. Plants with flattened seedpods also take advantage of the falling-paper effect.

The research was funded by National Science Foundation, the U.S. Air Force Office of Scientific Research and the Packard Foundation.

Says the professor who does not use the falling-paper effect to grade student essays and forecast their future: "What is predictable is that as the autumn leaves tumble down, they drift in particular directions, depending on the way they turn. This may explain, Wang adds, "why you are getting the leaves from your neighbor."

Roger Segelken | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>