Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Radio Astronomers Remove the Blindfold

08.10.2004


UK radio astronomers at the Jodrell Bank Observatory, working with colleagues from Europe and the USA, have demonstrated a new technique that will revolutionise the way they observe. To create the very best quality images of the sky, they routinely combine data from multiple telescopes from around the world - a technique called Very Long Baseline Interferometry (VLBI). They have now combined this with the power of dedicated internet resources to send data from all the telescopes to a special computer, to combine the observations in real-time (e-VLBI).



In conventional interferometry, far from the traditional image of an astronomer peering through an eyepiece, radio astronomers have to wait weeks or even months to see the results of their work as data tapes are shipped around the world to be combined at a central processing facility.

Prof Phil Diamond, of Jodrell Bank Observatory explains “Previously, we’ve been working in the dark, collecting data that we can’t see in its entirety until painfully long weeks later. Now using e-VLBI, we have removed that blindfold; we can process the observations taken at a number of locations around the world at once, in real time. In future, this technique will allow us to take much better images than previously possible, revealing in much greater detail the Universe around us.”


e-VLBI uses new dedicated internet infrastructures (called research networks) in the participating countries, so that data from all the telescopes can be relayed rapidly to a centre in the Netherlands where the data are combined and sent back to the astronomers, who then produce the images. These new observations give an exciting glimpse of the future of radio astronomy. Using research networks, not only will radio astronomers be able to see deeper into the distant Universe, they’ll be able to capture unpredictable, transient events as they happen, reliably and quickly.

The star chosen for this remarkable demonstration, called IRC+10420, is one of the most unusual in the sky. Surrounded by clouds of dusty gas and emitting strongly in radio waves, the object is poised at the end of its life, heading toward a cataclysmic explosion known as a ’supernova’.

Although the scientific goals of the experiment were modest, these e-VLBI observations of IRC+10420 open up the possibility of watching the structures of astrophysical objects as they change. IRC+10420 is a supergiant star in the constellation of Aquila. It has a mass about 10 times that of our own Sun and lies about 15,000 light years from Earth.

One of the brightest infrared sources in the sky, it is surrounded by a thick shell of dust and gas thrown out from the surface of the star at a rate of about 200 times the mass of the Earth every year. Radio astronomers are able to image the dust and gas surrounding IRC+10420 because one of the component molecules, hydroxyl (OH), reveals itself by means of strong ’maser’ emission. Essentially, the astronomers see clumps of gas where radio emission is strongly amplified by special conditions.

With the zoom lens provided by e-VLBI, astronomers can make images with great detail and watch the clumps of gas move, watch masers being born and die on timescales of weeks to months, and study the changing magnetic fields that permeate the shell. The results show that the gas is moving at about 40 km/s and was ejected from the star about 900 years ago. As Prof. Phil Diamond explained, "The material we’re seeing in this image left the surface of the star at around the time of the Norman Conquest of England".

It is believed IRC+10420 is rapidly evolving toward the end of its life. At some point, maybe thousands of years from now, maybe tomorrow, the star is expected to blow itself apart in one of the most energetic phenomena known in the Universe - a ’supernova’. The resulting cloud of material will eventually form a new generation of stars and planetary systems. Radio astronomers are now poised, with the incredible power of e-VLBI, to catch the details as they happen and study the physical processes that are so important to the structure of our Galaxy and to life itself.

Julia Maddock | alfa
Further information:
http://www.pparc.ac.uk

More articles from Physics and Astronomy:

nachricht NUS engineers develop novel method for resolving spin texture of topological surface states using transport measurements
26.04.2018 | National University of Singapore

nachricht European particle-accelerator community publishes the first industry compendium
26.04.2018 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>