Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High Energy Mystery lurks at the Galactic Centre

22.09.2004


A mystery lurking at the centre of our own Milky Way galaxy - an object radiating high-energy gamma rays - has been detected by an international team of astronomers. Their research, published today (September 22nd) in the Journal Astronomy and Astrophysics, was carried out using the High Energy Stereoscopic System (H.E.S.S.), an array of four telescopes, in Namibia, South-West Africa.

The Galactic Centre harbours a number of potential gamma-ray sources, including a supermassive black hole, remnants of supernova explosions and possibly an accumulation of exotic ‘dark matter’ particles, each of which should emit the radiation slightly differently. The radiation observed by the H.E.S.S. team comes from a region very near Sagittarius A*, the black hole at the centre of the galaxy. According to most theories of dark matter, it is too energetic to have been created by the annihilation of dark matter particles. The observed energy spectrum best fits theories of the source being a giant supernova explosion, which should produce a constant stream of radiation.

Dr. Paula Chadwick of the University of Durham, UK said, “We know that a giant supernova exploded in this region 10,000 years ago. Such an explosion could accelerate cosmic gamma rays to the high energies we have seen - a billion times more energy than the radiation used for X-rays in hospitals. But further observations will be needed to determine the exact source.”



Professor Ian Halliday, Chief Executive of the Particle Physics and Astronomy Research Council (PPARC) which funds UK involvement in H.E.S.S. said; “Science continues to throw out the unexpected as we push back the frontiers of knowledge.” Halliday added “The centre of our Galaxy is a mysterious place, home to exotic phenomena such as a black hole and dark matter. Finding out which of these sources produced the gamma-rays will tell us a lot about the processes taking place in the very heart of the Milky Way.”

However, the team’s theory doesn’t fit with earlier results obtained by the Japanese /Australian CANGAROO instrument or the US Whipple instrument. Both of these have detected high-energy gamma rays from the Galactic Centre in the past (observations from 1995-2002), though not with the same precision as H.E.S.S, and they were unable to pinpoint the exact location as H.E.S.S. has now done, making it harder to deduce the source. These previous results have different characteristics to the H.E.S.S. observations. It is possible that the gamma-ray source at the Galactic Centre varies over the timescale of a year, suggesting that the source is in fact a variable object, such as the central black hole.

The H.E.S.S. team hopes to unravel the mystery with further observations of the Galactic Centre over the next year or two. The full array of four telescopes will be inaugurated on September 29th 2004, see the following url for further details.

Julia Maddock | alfa
Further information:
http://www.mpi-hd.mpg.de/hfm/HESS/public/HESS_broschuere_04_c.pdf
http://www.pparc.ac.uk

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>