Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What Does A Waterfall Sound Like In Space?

30.06.2004


The answer to this fascinating question may be found on Titan, Saturn’s largest moon. University of Southampton scientist Professor Tim Leighton has speculated how the sound of splashing liquid in deep space might differ to that heard on Earth - and it’s possible that his theory could be proved later this year by NASA’s Cassini mission to Saturn. In the meantime, he has recreated the sound he believes it makes and put it on the Internet.

On Thursday 1 July 2004, NASA’s Cassini space craft will go into orbit around Saturn where it will study the planet, its moons and rings for four years. However, in Professor Leighton’s view, possibly the most interesting aspect of the Cassini mission, is the European Space Agency’s probe Huygens, which will study Titan. After a seven-year journey strapped to the side of Cassini, the probe will separate from it on Christmas Day 2004 and coast for 20 days before parachuting through the thick atmosphere to become the first man-made object to land on the moon of another planet on 14 January 2005.

Titan’s thick smog has prevented earlier spacecraft photographing its surface, but there are suggestions that the moon may be home to seas and streams made, not of water, but of liquid ethane. The main focus of Huygens’ mission is sampling the smog-laden atmosphere, but three minutes of battery time will be used for investigations immediately after landing. Although the probe’s microphone is on board primarily to monitor atmospheric buffering, Professor Leighton of the University’s Institute for Sound and Vibration Research, has suggested that, were the microphone to detect a splash-down as opposed to a crunch on landing, the question of what a splash in space might sound like would be answered.



Professor Leighton, who has speculated for several years on sounds in space, explains: ’I began asking whether the noise of splashes which is so familiar to us on Earth would be recognisable in a sea of liquid ethane at a temperature of 180 degrees below zero. NASA’s specially-commissioned painting of a waterfall - actually a methane fall - on Titan inspired me to attempt to predict how it would sound. I set up the equations and measured the sound of a small waterfall in nearby Romsey. My colleague Dr Paul White then processed the signal to obtain what we believe would be the sound of a methane fall on Titan.

’Given that the last decade has seen an explosion in the amount we can learn about the oceans simply by listening to them, from storms to seabed properties to coastal erosion, acoustics represent a potentially exciting and comparatively low-cost method of space exploration.’

Professor Leighton outlines his ideas for the role of acoustics in space exploration in an article entitled ’The Sound of Titan’ to be published in the July/August edition of Acoustics Bulletin. The sound of the methane fall as calculated by Professor Leighton and Dr Paul White can be heard at www.isvr.soton.ac.uk/fdag/uaua.htm

Sarah Watts | alfa
Further information:
http://www.soton.ac.uk
http://www.isvr.soton.ac.uk

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>