Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What Does A Waterfall Sound Like In Space?

30.06.2004


The answer to this fascinating question may be found on Titan, Saturn’s largest moon. University of Southampton scientist Professor Tim Leighton has speculated how the sound of splashing liquid in deep space might differ to that heard on Earth - and it’s possible that his theory could be proved later this year by NASA’s Cassini mission to Saturn. In the meantime, he has recreated the sound he believes it makes and put it on the Internet.

On Thursday 1 July 2004, NASA’s Cassini space craft will go into orbit around Saturn where it will study the planet, its moons and rings for four years. However, in Professor Leighton’s view, possibly the most interesting aspect of the Cassini mission, is the European Space Agency’s probe Huygens, which will study Titan. After a seven-year journey strapped to the side of Cassini, the probe will separate from it on Christmas Day 2004 and coast for 20 days before parachuting through the thick atmosphere to become the first man-made object to land on the moon of another planet on 14 January 2005.

Titan’s thick smog has prevented earlier spacecraft photographing its surface, but there are suggestions that the moon may be home to seas and streams made, not of water, but of liquid ethane. The main focus of Huygens’ mission is sampling the smog-laden atmosphere, but three minutes of battery time will be used for investigations immediately after landing. Although the probe’s microphone is on board primarily to monitor atmospheric buffering, Professor Leighton of the University’s Institute for Sound and Vibration Research, has suggested that, were the microphone to detect a splash-down as opposed to a crunch on landing, the question of what a splash in space might sound like would be answered.



Professor Leighton, who has speculated for several years on sounds in space, explains: ’I began asking whether the noise of splashes which is so familiar to us on Earth would be recognisable in a sea of liquid ethane at a temperature of 180 degrees below zero. NASA’s specially-commissioned painting of a waterfall - actually a methane fall - on Titan inspired me to attempt to predict how it would sound. I set up the equations and measured the sound of a small waterfall in nearby Romsey. My colleague Dr Paul White then processed the signal to obtain what we believe would be the sound of a methane fall on Titan.

’Given that the last decade has seen an explosion in the amount we can learn about the oceans simply by listening to them, from storms to seabed properties to coastal erosion, acoustics represent a potentially exciting and comparatively low-cost method of space exploration.’

Professor Leighton outlines his ideas for the role of acoustics in space exploration in an article entitled ’The Sound of Titan’ to be published in the July/August edition of Acoustics Bulletin. The sound of the methane fall as calculated by Professor Leighton and Dr Paul White can be heard at www.isvr.soton.ac.uk/fdag/uaua.htm

Sarah Watts | alfa
Further information:
http://www.soton.ac.uk
http://www.isvr.soton.ac.uk

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>