Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

FUSE Satellite Completes Five Years in Orbit

22.06.2004


Project marks unique collaboration with NASA

NASA’s Far Ultraviolet Spectroscopic Explorer (FUSE) satellite will reach a major milestone on Thursday, June 24, 2004 – the five-year anniversary of its launch atop a Delta-II rocket from Cape Canaveral in Florida.

The 18-foot tall, 3,000 pound satellite continues to operate from its perch nearly 500 miles above the Earth’s surface, gathering unique data about everything from planets and nearby stars to galaxies and quasars billions of light years away. Groundbreaking science done during FUSE’s five years in orbit include a first-ever observation of molecular nitrogen outside our solar system; confirmation of a hot gas halo surrounding the Milky Way galaxy; and a rare glimpse into molecular hydrogen in the Mars’ atmosphere, among other findings. By its fifth anniversary, FUSE will have collected more than 47 million seconds of science data on more than 2,200 unique objects in the cosmos.



“The sheer magnitude and amount of scientific work that is being produced using FUSE is beyond even what we had imagined,” said Warren Moos, FUSE’s principal investigator and a professor in the Department of Physics and Astronomy at The Johns Hopkins University’s Krieger School of Arts and Sciences in Baltimore. “Scientists working with FUSE have produced a steady flow of papers – a half dozen a month – each representing a major scientific study. What has been accomplished is extremely impressive and very satisfying.”

Designed and operated by a team of engineers and scientists at Johns Hopkins, FUSE is the largest astrophysics mission NASA has ever handed off to a university to manage. The project also has input from the Canadian and French space agencies.

“Astronomers are using FUSE to produce very exciting and unexpected results,” said George Sonneborn, FUSE project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Md.. “FUSE has discovered a new component of the Milky Way galaxy, is charting very hot gas in the vast regions of universe between distant galaxies, and is probing the nature of disks of gas and debris around young stars where planets may form.”

FUSE comprises four telescopes that function as a single instrument, dissecting far-ultraviolet light from distant objects into high-resolution spectographic information used by astronomers from around the world. With more than 10,000 times the sensitivity of its predecessor – the Copernicus satellite in the 1970s – FUSE complements the Hubble Space Telescope by observing light at wavelengths too short for that instrument to see. Since its launch, astronomers have used FUSE to study stars and nebulas in nearby galaxies, to discover a new component of the Milky Way galaxy and even to probe the vast regions of space between distant galaxies in the universe.

Despite the obvious successes, there have been times over the past five years when serious problems threatened the satellite’s pointing control system and thus, the mission itself. In late 2001, two of the device’s four reaction wheels – components that point the satellite’s telescopes and keep them steady – stopped working, leaving the mission in peril.

Rather than close up shop as some feared, FUSE scientists and engineers collaborated intensely for two months and devised a solution: using a combination of software and other hardware to mimic the functions of the missing wheels.

“It’s been a real roller-coaster ride,” says William P. Blair, FUSE’s chief of observatory operations and physics and astronomy research professor at Johns Hopkins. “But we’ve overcome the problems and, if anything, FUSE is now working better than ever.”

| newswise
Further information:
http://www.nasa.gov
http://fuse.pha.jhu.edu

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>