Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Chicago instrument ready to begin four-year study of Saturn’s rings

17.06.2004


After a quiet, six-and-a-half-year, 2.2-billion-mile journey to Saturn aboard NASA’s Cassini spacecraft, the University of Chicago’s dust detector will soon begin its attempt to help unravel the mystery of the planet’s legendary rings one tiny particle at a time.



Cassini will become the first spacecraft ever to enter Saturn’s orbit at precisely 9:30 p.m. CDT June 30. NASA launched Cassini in October 1997. The University’s instrument, called the High Rate Detector, has quietly recorded sporadic dust impacts in interplanetary space during the mission. "We have seen some impacts, but only a few, maybe one a month. That’s about all you’d expect," said Anthony Tuzzolino, a Senior Scientist at the University of Chicago’s Enrico Fermi Institute.

But that could change on June 30, after Cassini passes through a gap between two of Saturn’s rings. The rings consist of billions of objects ranging in size from microscopic particles to car-sized boulders locked into orbit around the planet.


"The project chose a virtually void section to pass through the ring system so we didn’t get clobbered," Tuzzolino said. "After ring-plane crossing, then we start the measurements of the trapped dust in Saturn’s system."

The $3 billion Cassini-Huygens mission is the most complex that has ever flown, involving 260 scientists from the United States and 17 European nations. Cassini and its Huygens probe are equipped with a total of 18 instruments. Cassini will release Huygens for a descent to the surface of Titan, Saturn’s largest moon, in December.

During the next four years, Cassini will orbit Saturn 76 times along different orbital planes and execute 52 close encounters with the planet’s 31 known moons. The University of Chicago detector will collect data the entire time as a component of a larger instrument, the German Cosmic Dust Analyzer. Together the two instruments will study the physical, chemical and dynamical properties of trapped Saturnian dust and its interactions with the planet’s rings, icy moons and magnetosphere.

The High Rate Detector instrument, which was built by Tuzzolino and tested with help from Thanasis Economou, Senior Scientist in the Enrico Fermi Institute, will measure particles ranging in size from twice the diameter of a human hair to particles 100 times smaller. The German instrument will measure even smaller particles.

The University of Chicago instrument is capable of detecting 100,000 particles per second as they collide with two small detectors mounted on the larger German instrument. "I wanted that capability, and it’s paid off many times," said Tuzzolino, who has contributed his expertise to dozens of NASA missions during the last four decades.

Last January, an instrument similar to the Cassini detector flew aboard the Stardust spacecraft during its encounter with Comet Wild 2. "On Stardust we had 2,000 counts in less than one second," Tuzzolino said. "You must have a high counting rate capability to make these kind of measurements."

And from 1999 to 2002, another Chicago dust detector flew aboard an Air Force satellite to study orbital debris. During that mission, the instrument detected a cloud of tiny debris particles that was scattered into space when the upper stage of a Chinese rocket unexpectedly exploded in orbit in 2000. The detection marked the first time that scientists had been able to link ultra-small particles to the break-up of a particular satellite.

Tuzzolino looks forward to more unexpected results from Saturn and its moons. "There’s a lot for us to learn," he said.

Steve Koppes | EurekAlert!
Further information:
http://www-news.uchicago.edu/

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>