Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cornell researchers move beyond ’nano’ to ’atto’ to build a scale sensitive enough to weigh a virus

05.04.2004


Cornell University researchers already have been able to detect the mass of a single cell using submicroscopic devices. Now they’re zeroing in on viruses. And the scale of their work is becoming so indescribably small that they have moved beyond the prefixes "nano" "pico" and "femto" to "atto." And just in sight is "zepto."


A gold dot, about 50 nanometers in diameter, fused to the end of a cantilevered oscillator about 4 micrometers long. A one-molecule-thick layer of a sulfur-containing chemical deposited on the gold adds a mass of about 6 attograms, which is more than enough to measure. Craighead Group/Cornell Univeristy


Scanning electron microscope photo of a single cell bound to the antibody layer on top of the oscillator. The cell is 1.43 micrometers long and 730 nanometers wide. Its mass was calculated at 665 femtograms.Craighead Group/Cornell University.



Members of the Cornell research group headed by engineering professor Harold Craighead report they have used tiny oscillating cantilevers to detect masses as small as 6 attograms by noting the change an added mass produces in the frequency of vibration.

Their submicroscopic devices, whose size is measured in nanometers (the width of three silicon atoms), are called nanoelectromechanical systems, or NEMS. But the masses they measure are now down to attograms. The mass of a small virus, for example, is about 10 attograms. An attogram is one-thousandth of a femtogram, which is one-thousandth of a picogram, which is one-thousandth of a nanogram, which is a billionth of a gram.


The work is an extension of earlier experiments that detected masses in the femtogram range, including a single E. coli bacterium, which recorded a mass of about 665 femtograms. For the latest experiments, the sensitivity of the measurement was increased by reducing the size of the NEMS cantilevers and enclosing them in a vacuum. Eventually, the researchers say, the technology could be used to detect and identify microorganisms and biological molecules.

The latest experiment by Craighead and graduate research assistant Rob Ilic is reported in the latest (April 1), issue of the Journal of Applied Physics.

The researchers manufactured the tiny cantilevers out of silicon and silicon nitride. Imagine a diving board 4 micrometers long and 500 nanometers wide. Just as a diving board will vibrate if you jump on it, these tiny cantilevers can be set into motion by an applied electric field, or by

hitting them with a laser. The frequency of vibration can be measured by shining a laser light on the device and observing changing reflection of the light. The technology is similar to that used last year in playing the newest version of the Cornell nanoguitar, built to demonstrate the potential of nanofabrication.

The frequency of vibration of an object is, among other things, a function of mass: A heavy guitar string vibrates more slowly than a light one and produces a lower tone. These tiny cantilevers vibrate at radio frequencies, in the 1 to 15 megahertz range, and because they are so small to begin with, adding just a tiny bit more mass will make a measurable change in frequency.

For cell detection, the researchers coated their cantilevers with antibodies that bind to E. coli bacteria, then bathed the devices in a solution containing the cells. Some of the cells were bound to the surface, and the additional mass changed the frequency of vibration. In one case just one cell happened to bond to a cantilever, and it was possible to detect the mass of the single cell.

Antibodies also have been used to bind virus particles or proteins to a cantilever, the researchers say, but for the experiment reported in the Journal of Applied Physics, they attached tiny gold dots as small as 50 nanometers in diameter to the ends of the cantilevers. The dots then were exposed to a sulfur-based organic chemical that naturally binds to gold, which formed a single layer of a few hundred molecules on the surfaces of the dots. From the frequency shift that resulted, the researchers calculated that the mass added to a typical 50-nanometer gold dot was 6.3 attograms.

After testing various cantilever lengths and another type of oscillator suspended between two points, they calculated that the minimum resolvable mass would be .37 of an attogram. They said that with refinements, the devices could be extended to the zeptogram range, or one one-thousandth of an attogram. The sensitivity is such that the devices could be used to detect and identify DNA molecules, proteins and other biological molecules by coating the cantilevers with appropriate antibodies or other materials that would bind to the targets. Ilic already reports that "we have done viruses," although that achievement is not reported in the current paper.

Co-authors of the Journal of Applied Physics paper are Christopher Ober, the F.N. Bard Professor of Metallurgical Engineering at Cornell; Cornell graduate research assistant Wageesha Senaratne; S. Krylovof Tel Aviv University; and P. Neuzil of the Institute of Bioengineering and Nanotechnology in Singapore. The experiments that detected masses in the femtogram range were described in the Nov./Dec. 2001 issue of the Journal of Vacuum Science and Technology by Ilic, Cornell graduate student David Czaplewski, research associate Maxim Zalalutdinov, Craighead, Neuzil, Cornell graduate student Christine Capagnolo and Carl Batt, Liberty Hyde Bailey Professor of Food Science at Cornell.

The research was a project of Cornell’s National Science Foundation (NSF)-supported Nanobiotechnology Center, using the equipment of the Cornell Nanoscale Facility, also funded by the NSF.

Bill Steele | Cornell University
Further information:
http://www.news.cornell.edu/releases/April04/attograms.ws.html

More articles from Physics and Astronomy:

nachricht NASA's SDO sees partial eclipse in space
29.05.2017 | NASA/Goddard Space Flight Center

nachricht Strathclyde-led research develops world's highest gain high-power laser amplifier
29.05.2017 | University of Strathclyde

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>