Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cornell researchers move beyond ’nano’ to ’atto’ to build a scale sensitive enough to weigh a virus

05.04.2004


Cornell University researchers already have been able to detect the mass of a single cell using submicroscopic devices. Now they’re zeroing in on viruses. And the scale of their work is becoming so indescribably small that they have moved beyond the prefixes "nano" "pico" and "femto" to "atto." And just in sight is "zepto."


A gold dot, about 50 nanometers in diameter, fused to the end of a cantilevered oscillator about 4 micrometers long. A one-molecule-thick layer of a sulfur-containing chemical deposited on the gold adds a mass of about 6 attograms, which is more than enough to measure. Craighead Group/Cornell Univeristy


Scanning electron microscope photo of a single cell bound to the antibody layer on top of the oscillator. The cell is 1.43 micrometers long and 730 nanometers wide. Its mass was calculated at 665 femtograms.Craighead Group/Cornell University.



Members of the Cornell research group headed by engineering professor Harold Craighead report they have used tiny oscillating cantilevers to detect masses as small as 6 attograms by noting the change an added mass produces in the frequency of vibration.

Their submicroscopic devices, whose size is measured in nanometers (the width of three silicon atoms), are called nanoelectromechanical systems, or NEMS. But the masses they measure are now down to attograms. The mass of a small virus, for example, is about 10 attograms. An attogram is one-thousandth of a femtogram, which is one-thousandth of a picogram, which is one-thousandth of a nanogram, which is a billionth of a gram.


The work is an extension of earlier experiments that detected masses in the femtogram range, including a single E. coli bacterium, which recorded a mass of about 665 femtograms. For the latest experiments, the sensitivity of the measurement was increased by reducing the size of the NEMS cantilevers and enclosing them in a vacuum. Eventually, the researchers say, the technology could be used to detect and identify microorganisms and biological molecules.

The latest experiment by Craighead and graduate research assistant Rob Ilic is reported in the latest (April 1), issue of the Journal of Applied Physics.

The researchers manufactured the tiny cantilevers out of silicon and silicon nitride. Imagine a diving board 4 micrometers long and 500 nanometers wide. Just as a diving board will vibrate if you jump on it, these tiny cantilevers can be set into motion by an applied electric field, or by

hitting them with a laser. The frequency of vibration can be measured by shining a laser light on the device and observing changing reflection of the light. The technology is similar to that used last year in playing the newest version of the Cornell nanoguitar, built to demonstrate the potential of nanofabrication.

The frequency of vibration of an object is, among other things, a function of mass: A heavy guitar string vibrates more slowly than a light one and produces a lower tone. These tiny cantilevers vibrate at radio frequencies, in the 1 to 15 megahertz range, and because they are so small to begin with, adding just a tiny bit more mass will make a measurable change in frequency.

For cell detection, the researchers coated their cantilevers with antibodies that bind to E. coli bacteria, then bathed the devices in a solution containing the cells. Some of the cells were bound to the surface, and the additional mass changed the frequency of vibration. In one case just one cell happened to bond to a cantilever, and it was possible to detect the mass of the single cell.

Antibodies also have been used to bind virus particles or proteins to a cantilever, the researchers say, but for the experiment reported in the Journal of Applied Physics, they attached tiny gold dots as small as 50 nanometers in diameter to the ends of the cantilevers. The dots then were exposed to a sulfur-based organic chemical that naturally binds to gold, which formed a single layer of a few hundred molecules on the surfaces of the dots. From the frequency shift that resulted, the researchers calculated that the mass added to a typical 50-nanometer gold dot was 6.3 attograms.

After testing various cantilever lengths and another type of oscillator suspended between two points, they calculated that the minimum resolvable mass would be .37 of an attogram. They said that with refinements, the devices could be extended to the zeptogram range, or one one-thousandth of an attogram. The sensitivity is such that the devices could be used to detect and identify DNA molecules, proteins and other biological molecules by coating the cantilevers with appropriate antibodies or other materials that would bind to the targets. Ilic already reports that "we have done viruses," although that achievement is not reported in the current paper.

Co-authors of the Journal of Applied Physics paper are Christopher Ober, the F.N. Bard Professor of Metallurgical Engineering at Cornell; Cornell graduate research assistant Wageesha Senaratne; S. Krylovof Tel Aviv University; and P. Neuzil of the Institute of Bioengineering and Nanotechnology in Singapore. The experiments that detected masses in the femtogram range were described in the Nov./Dec. 2001 issue of the Journal of Vacuum Science and Technology by Ilic, Cornell graduate student David Czaplewski, research associate Maxim Zalalutdinov, Craighead, Neuzil, Cornell graduate student Christine Capagnolo and Carl Batt, Liberty Hyde Bailey Professor of Food Science at Cornell.

The research was a project of Cornell’s National Science Foundation (NSF)-supported Nanobiotechnology Center, using the equipment of the Cornell Nanoscale Facility, also funded by the NSF.

Bill Steele | Cornell University
Further information:
http://www.news.cornell.edu/releases/April04/attograms.ws.html

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>