Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein folding on a chip

29.03.2004


Scientists at the U.S. Department of Energy’s Brookhaven National Laboratory are proposing to use a supercomputer originally developed to simulate elementary particles in high-energy physics to help determine the structures and functions of proteins, including, for example, the 30,000 or so proteins encoded by the human genome. Structural information will help scientists better understand proteins’ role in disease and health, and may lead to new diagnostic and therapeutic agents.



Unlike typical parallel processors, the 10,000 processors in this supercomputer (called Quantum Chromodynamics on a Chip, or QCDOC, for its original application in physics) each contain their own memory and the equivalent of a 24-lane superhighway for communicating with one another in six dimensions. This configuration allows the supercomputer to break the task of deciphering the three-dimensional arrangement of a protein’s atoms -- 100,000 in a typical protein -- into smaller chunks of 10 atoms per processor. Working together, the chips effectively cut the computing time needed to solve a protein’s structure by a factor of 1000, says James Davenport, a physicist at Brookhaven. This would reduce the time for a simulation from approximately 20 years to 1 week.

"The computer analyzes the forces of attraction and repulsion between atoms, depending on their positions, distances, and angles. It shuffles through all the possible arrangements to arrive at the most stable three-dimensional configuration," Davenport says.


The technique is complementary to other methods of protein-structure determination, such as x-ray crystallography -- where the pattern of x-rays scattering off atoms in crystallized proteins is used to determine structure. It will be particularly useful for proteins that are impossible or difficult to crystallize, such as those that control the movement of molecules across the cellular membrane. The high-speed analysis will also allow scientists to study how proteins change as they interact or undergo other biochemical processes, which will give them more information about the proteins’ functions than available from structural studies alone.

Davenport and colleagues at Stony Brook University will test their application on a QCDOC machine that has been developed for physics applications at Brookhaven by Columbia University, IBM, and the RIKEN/BNL Research Center. To hear more about the potential for using such a machine for studies of proteins, see Davenport’s talk during the "Molecular Biology and Computation Session" on Friday, March 26, at 11:15 a.m. in room 510C. This work is funded by the Office of Advanced Scientific Computing Research within the Department of Energy’s Office of Science and Brookhaven Laboratory discretionary funding.


NOTE: This press release describes a talk being given by a scientist from the U.S. Department of Energy’s Brookhaven National Laboratory at the March 2004 meeting of the American Physical Society, taking place March 22-26 at the Palais de Congres, Montreal, Canada (http://www.aps.org/meet/MAR04/).

One of the ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization. Visit Brookhaven Lab’s electronic newsroom for links, news archives, graphics, and more: http://www.bnl.gov/newsroom

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov/newsroom
http://www.aps.org/meet/MAR04/

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>