Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIST helps verify accuracy of the world’s best rulers

19.03.2004


Research paves the way to next generation of ’atomic clocks’



Three of the world’s premier measurement laboratories - including the Commerce Department’s National Institute of Standards and Technology (NIST) - have lined up the "hash marks" from four of the world’s best optical frequency rulers and declared that they match. The experiments, reported in the March 19, 2004, issue of the journal Science, are a significant step toward next-generation "atomic clocks" based on optical rather than microwave frequencies. Such clocks are expected to be as much as 100 times more accurate than today’s best timekeeping systems.

Applications for ultra-precise timekeeping include navigation, telecommunications and basic scientific research.


Optical "rulers" are lasers that emit pulses of light lasting just 10 femtoseconds (10 quadrillionths of a second, or 10 millionths of a billionth of a second). The experiments demonstrated that femtosecond laser devices could be used to reproducibly generate and accurately control the frequency of electromagnetic fields---a critical step in taking the measurement of time beyond its current accuracy level of about 0.1 nanosecond per day (i.e., losing or gaining no more than about 0.1 billionths of a second per day).

These devices are called "frequency combs" because a graph of the oscillating electromagnetic waves looks like the teeth of a hair comb. The output of these frequency combs can be used as a ruler for measuring time and frequency. For instance, a femtosecond frequency comb can reproducibly divide an interval of an hour into 10 quintillion (one followed by 19 zeroes) segments of equal time. The combs also could be used in making ultra-precise length measurements.

Until a few years ago, the femtosecond laser devices were the missing link in the engineering of optical atomic clocks. The world’s current best atomic clocks, such as the NIST-F1 laser-cooled cesium fountain clock, are based on microwave vibrations in atoms with a frequency of about 9 billion cycles per second. While this is very fast, electronic systems can accurately count these vibrations.

But no electronic systems exist that can directly count the optical oscillations in atoms such as calcium and mercury at about 500,000 billion cycles per second. A frequency comb, functioning like the electronics in a conventional clock, would be used to divide the very fast oscillations of future optical clocks into lower frequencies that can be linked to microwave standards such as NIST-F1 and compared to distribution systems such as the Global Positioning System (GPS) and broadcasts from NIST’s radio stations.

"These lasers are the gears of our next-generation clocks," says NIST physicist Scott Diddams, a co-author of the Science paper. "Our experiments made certain that the gears will run smoothly."

NIST physicists and collaborators compared the operation of four femtosecond laser systems of different designs--two systems built at NIST, one by the Bureau International des Poids et Mesures in France, and one by East China Normal University in Shanghai.

The team compared the devices in pairs, with reference to a third device arbitrarily chosen as a standard, on six days over a period of several months. The teeth of two combs were lined up and then a radio frequency "beating" technique--the optical equivalent of using a tuning fork to determine how closely a piano key is tuned to the correct note -– was used to check the exactness of the match.

The NIST experiments are the first to compare the operation of multiple femtosecond frequency combs---thereby demonstrating reproducibility---and to verify that both the starting position of a comb and the spacing between the teeth can be controlled precisely.

The lasers used in the experiments emit light across a broad frequency range, from the visible to near-infrared parts of the spectrum. This versatility enables scientists to design frequency combs with teeth that match various optical frequency standards now under development, which, in turn, allows much better performance and increases the likelihood of practical applications resulting from the technology. One key application would be optical clocks much more accurate than today’s best clocks, such as NIST-F1.

Femtosecond frequency combs could be used to make more accurate optical clocks that could help answer research questions such as whether fundamental physical constants---essential to many practical calculations made in science---have changed very slightly over billions of years. NIST scientists already have used optical clocks to set limits on changes in one fundamental constant (the "fine-structure" constant that describes the strength of the electromagnetic force). Further studies of this type could help develop a better understanding of the fundamental laws of nature.

Scientists from OFS Laboratories in New Jersey collaborated on the frequency comb comparisons with the team from NIST and the French and Chinese institutions.


As a non-regulatory agency of the U.S. Department of Commerce’s Technology Administration, NIST develops and promotes measurement, standards and technology to enhance productivity, facilitate trade and improve the quality of life.

Ma, L.S.; Bi, Z.; Bartels, A.; Robertsson, L.; Zucco, M.; Windeler, R.S.; Wilpers, G.; Oates, C.; Hollberg, L.; and Diddams, S.A. "Optical Frequency Synthesis and Comparison with Uncertainty at the 10^-19 Level." Science 303, 5665: 1843-1845 (March 19, 2004).

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov/

More articles from Physics and Astronomy:

nachricht Electrocatalysis can advance green transition
23.01.2017 | Technical University of Denmark

nachricht Quantum optical sensor for the first time tested in space – with a laser system from Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>