Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Report Bubble Fusion Results Replicated

03.03.2004


Physical Review E publishes paper on fusion experiment conducted with upgraded measurement system



Physical Review E has announced the publication of an article by a team of researchers from Rensselaer Polytechnic Institute (RPI), Purdue University, Oak Ridge National Laboratory (ORNL), and the Russian Academy of Science (RAS) stating that they have replicated and extended previous experimental results that indicated the occurrence of nuclear fusion using a novel approach for plasma confinement.

This approach, called bubble fusion, and the new experimental results are being published in an extensively peer-reviewed article titled “Additional Evidence of Nuclear Emissions During Acoustic Cavitation,” which is scheduled to be posted on Physical Review E’s Web site and published in its journal this month.


The research team used a standing ultrasonic wave to help form and then implode the cavitation bubbles of deuterated acetone vapor. The oscillating sound waves caused the bubbles to expand and then violently collapse, creating strong compression shock waves around and inside the bubbles. Moving at about the speed of sound, the internal shock waves impacted at the center of the bubbles causing very high compression and accompanying temperatures of about 100 million Kelvin.

These new data were taken with an upgraded instrumentation system that allowed data acquisition over a much longer time than was possible in the team’s previous bubble fusion experiments. According to the new data, the observed neutron emission was several orders of magnitude greater than background and had extremely high statistical accuracy. Tritium, which also is produced during the fusion reactions, was measured and the amount produced was found to be consistent with the observed neutron production rate.

Earlier test data, which were reported in Science (Vol. 295, March 2002), indicated that nuclear fusion had occurred, but these data were questioned because they were taken with less precise instrumentation.

“These extensive new experiments have replicated and extended our earlier results and hopefully answer all of the previous questions surrounding our discovery,” said Richard T. Lahey Jr., the Edward E. Hood Professor of Engineering at Rensselaer and the director of the analytical part of the joint research project.

Other fusion techniques, such as those that use strong magnetic fields or lasers to contain the plasma, cannot easily achieve the necessary compression, Lahey said. In the approach to be published in Physical Review E, spherical compression of the plasma was achieved due to the inertia of the liquid surrounding the imploding bubbles.

Professor Lahey also explained that, unlike fission reactors, fusion does not produce a significant amount of radioactive waste products or decay heat. Tritium gas, a radioactive by-product of deuterium-deuterium bubble fusion, is actually a part of the fuel, which can be consumed in deuterium-tritium fusion reactions.

Researchers Rusi Taleyarkhan, Colin West, and Jae-Seon Cho conducted the bubble fusion experiments at ORNL. At Rensselaer and in Russia, Professors Lahey and Robert I. Nigmatulin performed the theoretical analysis of the bubble dynamics and predicted the shock-induced pressures, temperatures, and densities in the imploding vapor bubbles. Robert Block, professor emeritus of nuclear engineering at Rensselaer, helped to design, set up, and calibrate a state-of-the-art neutron and gamma ray detection system for the new experiments.

Special hydrodynamic shock codes have been developed in both Russia and at Rensselaer to support and interpret the ORNL experiments. These computer codes indicated that the peak gas temperatures and densities in the ORNL experiments were sufficiently high to create fusion reactions. Indeed, the theoretical shock code predictions of deuterium-deuterium (D-D) fusion were consistent with the ORNL data.

The research team leaders are all well known authorities in the fields of multiphase flow and heat transfer technology and nuclear engineering. Taleyarkhan, a fellow of the American Nuclear Society (ANS) and the program’s director, held the position of Distinguished Scientist at ORNL, and is currently the Ardent Bement Jr. Professor of Nuclear Engineering at Purdue University. Lahey is a fellow of both the ANS and the American Society of Mechanical Engineers (ASME), and is a member of the National Academy of Engineering (NAE). Nigmatulin is a visiting scholar at Rensselaer, a member of the Russian Duma, and the president of the Bashkortonstan branch of the Russian Academy of Sciences (RAS). Block is a fellow of the ANS and is the longtime director of the Gaerttner Linear Accelerator (LINAC) Laboratory at Rensselaer. The bubble fusion research program was supported by a grant from the Defense Advanced Research Projects Agency (DARPA).

About Rensselaer

Rensselaer Polytechnic Institute, founded in 1824, is the nation’s oldest technological university. The school offers degrees in engineering, the sciences, information technology, architecture, management, and the humanities and social sciences. Institute programs serve undergraduates, graduate students, and working professionals around the world. Rensselaer faculty are known for pre-eminence in research conducted in a wide range of research centers that are characterized by strong industry partnerships. The Institute is especially well known for its success in the transfer of technology from the laboratory to the marketplace so that new discoveries and inventions benefit human life, protect the environment, and strengthen economic development.

Theresa Bourgeois | Rensselaer Polytechnic Institute
Further information:
http://www.rpi.edu/web/News/press_releases/2004/lahey.htm

More articles from Physics and Astronomy:

nachricht Tracing aromatic molecules in the early universe
23.03.2017 | University of California - Riverside

nachricht New study maps space dust in 3-D
23.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>