Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Report Bubble Fusion Results Replicated

03.03.2004


Physical Review E publishes paper on fusion experiment conducted with upgraded measurement system



Physical Review E has announced the publication of an article by a team of researchers from Rensselaer Polytechnic Institute (RPI), Purdue University, Oak Ridge National Laboratory (ORNL), and the Russian Academy of Science (RAS) stating that they have replicated and extended previous experimental results that indicated the occurrence of nuclear fusion using a novel approach for plasma confinement.

This approach, called bubble fusion, and the new experimental results are being published in an extensively peer-reviewed article titled “Additional Evidence of Nuclear Emissions During Acoustic Cavitation,” which is scheduled to be posted on Physical Review E’s Web site and published in its journal this month.


The research team used a standing ultrasonic wave to help form and then implode the cavitation bubbles of deuterated acetone vapor. The oscillating sound waves caused the bubbles to expand and then violently collapse, creating strong compression shock waves around and inside the bubbles. Moving at about the speed of sound, the internal shock waves impacted at the center of the bubbles causing very high compression and accompanying temperatures of about 100 million Kelvin.

These new data were taken with an upgraded instrumentation system that allowed data acquisition over a much longer time than was possible in the team’s previous bubble fusion experiments. According to the new data, the observed neutron emission was several orders of magnitude greater than background and had extremely high statistical accuracy. Tritium, which also is produced during the fusion reactions, was measured and the amount produced was found to be consistent with the observed neutron production rate.

Earlier test data, which were reported in Science (Vol. 295, March 2002), indicated that nuclear fusion had occurred, but these data were questioned because they were taken with less precise instrumentation.

“These extensive new experiments have replicated and extended our earlier results and hopefully answer all of the previous questions surrounding our discovery,” said Richard T. Lahey Jr., the Edward E. Hood Professor of Engineering at Rensselaer and the director of the analytical part of the joint research project.

Other fusion techniques, such as those that use strong magnetic fields or lasers to contain the plasma, cannot easily achieve the necessary compression, Lahey said. In the approach to be published in Physical Review E, spherical compression of the plasma was achieved due to the inertia of the liquid surrounding the imploding bubbles.

Professor Lahey also explained that, unlike fission reactors, fusion does not produce a significant amount of radioactive waste products or decay heat. Tritium gas, a radioactive by-product of deuterium-deuterium bubble fusion, is actually a part of the fuel, which can be consumed in deuterium-tritium fusion reactions.

Researchers Rusi Taleyarkhan, Colin West, and Jae-Seon Cho conducted the bubble fusion experiments at ORNL. At Rensselaer and in Russia, Professors Lahey and Robert I. Nigmatulin performed the theoretical analysis of the bubble dynamics and predicted the shock-induced pressures, temperatures, and densities in the imploding vapor bubbles. Robert Block, professor emeritus of nuclear engineering at Rensselaer, helped to design, set up, and calibrate a state-of-the-art neutron and gamma ray detection system for the new experiments.

Special hydrodynamic shock codes have been developed in both Russia and at Rensselaer to support and interpret the ORNL experiments. These computer codes indicated that the peak gas temperatures and densities in the ORNL experiments were sufficiently high to create fusion reactions. Indeed, the theoretical shock code predictions of deuterium-deuterium (D-D) fusion were consistent with the ORNL data.

The research team leaders are all well known authorities in the fields of multiphase flow and heat transfer technology and nuclear engineering. Taleyarkhan, a fellow of the American Nuclear Society (ANS) and the program’s director, held the position of Distinguished Scientist at ORNL, and is currently the Ardent Bement Jr. Professor of Nuclear Engineering at Purdue University. Lahey is a fellow of both the ANS and the American Society of Mechanical Engineers (ASME), and is a member of the National Academy of Engineering (NAE). Nigmatulin is a visiting scholar at Rensselaer, a member of the Russian Duma, and the president of the Bashkortonstan branch of the Russian Academy of Sciences (RAS). Block is a fellow of the ANS and is the longtime director of the Gaerttner Linear Accelerator (LINAC) Laboratory at Rensselaer. The bubble fusion research program was supported by a grant from the Defense Advanced Research Projects Agency (DARPA).

About Rensselaer

Rensselaer Polytechnic Institute, founded in 1824, is the nation’s oldest technological university. The school offers degrees in engineering, the sciences, information technology, architecture, management, and the humanities and social sciences. Institute programs serve undergraduates, graduate students, and working professionals around the world. Rensselaer faculty are known for pre-eminence in research conducted in a wide range of research centers that are characterized by strong industry partnerships. The Institute is especially well known for its success in the transfer of technology from the laboratory to the marketplace so that new discoveries and inventions benefit human life, protect the environment, and strengthen economic development.

Theresa Bourgeois | Rensselaer Polytechnic Institute
Further information:
http://www.rpi.edu/web/News/press_releases/2004/lahey.htm

More articles from Physics and Astronomy:

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>