Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new step in spintronics

26.02.2004


’Organic spin valves’ shown feasible for new electronic devices



University of Utah physicists have taken an important step toward a new generation of faster, cheaper computers and electronics by building the first "organic spin valves" – electrical switches that integrate two emerging fields of technology: organic semiconductor electronics and spin electronics, or spintronics.

In a study published Feb. 26 in the journal Nature, the researchers report they used a semiconductor made of organic material – instead of a conventional semiconductor such as silicon – to make switch-like valves that can control the flow of electrical current. They were able to change the flow of electricity through the valves by 40 percent.


"It’s an early step toward a new generation of miniature electronic devices: computer chips, light-emitting devices for displays, and sensors to detect radiation, air pollutants, light and magnetic fields," says Z. Valy Vardeny, a professor of physics and coauthor of the study.

Jing Shi, an associate professor and the study’s principal author, adds: "We are making progress toward devices that are made with organic materials and utilize a different property of electrons [their spin rather than their electrical charge] for things like computer memory, computer processors and sensors of various sorts."

More research and engineering are needed to produce such devices that are spintronic as well as electronic, but "we have done an important proof-of-concept experiment," says Shi.

Shi and Vardeny conducted the study with two University of Utah postdoctoral researchers: Zuhong Xiong and Di Wu.

A Primer on Spintronics and Spin Valves

In electronic devices, information is stored and transmitted by the flow of electricity in the form of negatively charged subatomic particles called electrons. The zeroes and ones of computer binary code are represented by the presence or absence of electrons within a semiconductor or other material.

In spintronics, information is stored and transmitted using another property of electrons: their spin. Spin is a difficult concept to explain. Technically, spin is the intrinsic angular momentum of a particle. But an easier way to describe spin is to imagine that each electron contains a tiny bar magnet, like a compass needle, that points either up or down to represent the electron’s spin.

Electrons moving through a nonmagnetic material normally have random spins (half are up and half are down) so the net effect is zero. But magnetic fields can be applied so that the spins are aligned (all up or all down), allowing a new way to store binary data in the form of ones (spins all up) and zeroes (spins all down).

Shi says the field of spintronics was born in the late 1980s with the discovery of the "giant magnetoresistance effect." Resistance is a measure of how much a material resists the flow of electrical current or electrons. The giant magnetoresistance effect occurs when a magnetic field is used to align the spin of electrons in the material, inducing a large change in a material’s resistance.

The effect first was discovered in a device made of multiple layers of electrically conducting material: alternating magnetic and nonmagnetic layers. The device was known as a "spin valve" because when a magnetic field was applied to the device, the spin of its electrons went from all up to all down, changing its resistance so that the device acted like a valve to increase or decrease the flow of electrical current.

Conventional spin valves have been widely used in computers since the mid 1990s. In older computers, electrical current was used by the "read head" to decipher data stored magnetically on the hard drive. Modern computer read heads are spin valves that are far more sensitive at reading data stored on a hard drive, allowing high-density, high-speed hard drives that store more data and can be read more quickly.

Spintronics "has quickly revolutionized magnetic recording technology and is going to revolutionize random access memory (RAM) made of semiconductors," Shi says.

Compared with purely electronic computers, computers with spintronic memory should be able to store more data, consume less power and process data more quickly. Conventional computer memory has transistors that use electric charges to store data as zeroes and ones. Spintronic memory will use up and down electron spins to represent such data.

Spintronics also should make instant-on computers possible. Once the spins are aligned, they stay that way until changed by a magnetic field – even if a computer is shut off. As a result, data will be available the moment a computer is turned back on, with no need to boot up the computer to move data from the hard drive to the memory.

Shi says major electronics companies now are developing spin-valve memory chips, which will show up first in cellular phones and digital cameras.

The Study: Spintronics and Organic Semiconductors Get Married

The next step in spintronics is to combine the advantages of spin-based devices with the qualities of semiconductors, such as their ability to be "doped" with substances that make them carry more or less electricity, or make them able to emit light, Shi says.

But he says researchers have made little progress so far in integrating the magnetic materials of spintronics with conventional semiconductors such as silicon or gallium arsenide. A major problem is that conventional semiconductors must be fabricated at high temperatures, making it difficult to produce the ultra-thin layers necessary to make a spin valve.

So Shi and fellow researchers set out to show that it is possible to create a spin valve made with an organic semiconductor rather than a conventional semiconductor.

Compared with conventional semiconductors, organic semiconductors are inexpensive and simpler to make, can be manufactured at lower temperatures with fewer toxic wastes, have electronic properties that can be adjusted, and are flexible so they can be molded to desired shapes. Organic semiconductors already are used as light-emitting diodes for some flat-screen TVs, cell phone displays, some billboards and a few computer display screens.

Shi, Vardeny, Xiong and Wu built three-layer organic spin valves using a middle layer made from an organic semiconductor named 8-hydroxyquinoline aluminum, or Alq3, which now is used in certain light-emitting diodes and is being developed for use in TV screens.

The organic semiconductor was sandwiched between two metallic layers: one made of cobalt and the other a compound named lanthanum strontium manganese oxide. The two metals acted as electrodes, injecting electrons with the desired spin into the middle, organic semiconductor layer. The spin valve is on a chip that measures about one-third inch square.

The physicists successfully injected electrons with aligned spins into the organic semiconductor and showed that the spins stayed aligned as the electrons moved through the semiconductor. By applying a weak magnetic field to the organic spin valve, the physicists caused a 40 percent change in the electrical current flowing through the valve. That qualifies as giant magnetoresistance.

The researchers also showed the spin-up or spin-down alignment of electrons was maintained when power was shut off – a property essential for spintronic computer memory.

More work is needed to develop organic spin valves that operate at higher temperatures, something that might be accomplished by removing impurities from the organic semiconductor. The spin valves in the study operated at temperatures ranging from minus 440 degrees Fahrenheit to minus 40 degrees Fahrenheit (minus 262 degrees Celsius to minus 40 degrees Celsius).

Nevertheless, the experiment "sets a stage for more practical applications," Shi says. "Organic semiconductors can be used for spintronic devices such as spin valves, spin light-emitting diodes and spin transistors."

Those devices can be used in computer memory chips and sensors to detect air pollution, magnetic fields, radiation or light, Vardeny says. For example, a conventional semiconductor transistor amplifies electric current and that’s about it. But an organic semiconductor can be designed so that its electron spins go from aligned to nonaligned when it is exposed to light, air pollution or radiation, changing the flow of electric current to trigger an alarm, Vardeny says.


University of Utah Public Relations
201 S Presidents Circle, Room 308
Salt Lake City, Utah 84112-9017
801-581-6773 fax: 585-3350

Lee Siegel | EurekAlert!
Further information:
http://www.utah.edu/unews

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>