Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new step in spintronics

26.02.2004


’Organic spin valves’ shown feasible for new electronic devices



University of Utah physicists have taken an important step toward a new generation of faster, cheaper computers and electronics by building the first "organic spin valves" – electrical switches that integrate two emerging fields of technology: organic semiconductor electronics and spin electronics, or spintronics.

In a study published Feb. 26 in the journal Nature, the researchers report they used a semiconductor made of organic material – instead of a conventional semiconductor such as silicon – to make switch-like valves that can control the flow of electrical current. They were able to change the flow of electricity through the valves by 40 percent.


"It’s an early step toward a new generation of miniature electronic devices: computer chips, light-emitting devices for displays, and sensors to detect radiation, air pollutants, light and magnetic fields," says Z. Valy Vardeny, a professor of physics and coauthor of the study.

Jing Shi, an associate professor and the study’s principal author, adds: "We are making progress toward devices that are made with organic materials and utilize a different property of electrons [their spin rather than their electrical charge] for things like computer memory, computer processors and sensors of various sorts."

More research and engineering are needed to produce such devices that are spintronic as well as electronic, but "we have done an important proof-of-concept experiment," says Shi.

Shi and Vardeny conducted the study with two University of Utah postdoctoral researchers: Zuhong Xiong and Di Wu.

A Primer on Spintronics and Spin Valves

In electronic devices, information is stored and transmitted by the flow of electricity in the form of negatively charged subatomic particles called electrons. The zeroes and ones of computer binary code are represented by the presence or absence of electrons within a semiconductor or other material.

In spintronics, information is stored and transmitted using another property of electrons: their spin. Spin is a difficult concept to explain. Technically, spin is the intrinsic angular momentum of a particle. But an easier way to describe spin is to imagine that each electron contains a tiny bar magnet, like a compass needle, that points either up or down to represent the electron’s spin.

Electrons moving through a nonmagnetic material normally have random spins (half are up and half are down) so the net effect is zero. But magnetic fields can be applied so that the spins are aligned (all up or all down), allowing a new way to store binary data in the form of ones (spins all up) and zeroes (spins all down).

Shi says the field of spintronics was born in the late 1980s with the discovery of the "giant magnetoresistance effect." Resistance is a measure of how much a material resists the flow of electrical current or electrons. The giant magnetoresistance effect occurs when a magnetic field is used to align the spin of electrons in the material, inducing a large change in a material’s resistance.

The effect first was discovered in a device made of multiple layers of electrically conducting material: alternating magnetic and nonmagnetic layers. The device was known as a "spin valve" because when a magnetic field was applied to the device, the spin of its electrons went from all up to all down, changing its resistance so that the device acted like a valve to increase or decrease the flow of electrical current.

Conventional spin valves have been widely used in computers since the mid 1990s. In older computers, electrical current was used by the "read head" to decipher data stored magnetically on the hard drive. Modern computer read heads are spin valves that are far more sensitive at reading data stored on a hard drive, allowing high-density, high-speed hard drives that store more data and can be read more quickly.

Spintronics "has quickly revolutionized magnetic recording technology and is going to revolutionize random access memory (RAM) made of semiconductors," Shi says.

Compared with purely electronic computers, computers with spintronic memory should be able to store more data, consume less power and process data more quickly. Conventional computer memory has transistors that use electric charges to store data as zeroes and ones. Spintronic memory will use up and down electron spins to represent such data.

Spintronics also should make instant-on computers possible. Once the spins are aligned, they stay that way until changed by a magnetic field – even if a computer is shut off. As a result, data will be available the moment a computer is turned back on, with no need to boot up the computer to move data from the hard drive to the memory.

Shi says major electronics companies now are developing spin-valve memory chips, which will show up first in cellular phones and digital cameras.

The Study: Spintronics and Organic Semiconductors Get Married

The next step in spintronics is to combine the advantages of spin-based devices with the qualities of semiconductors, such as their ability to be "doped" with substances that make them carry more or less electricity, or make them able to emit light, Shi says.

But he says researchers have made little progress so far in integrating the magnetic materials of spintronics with conventional semiconductors such as silicon or gallium arsenide. A major problem is that conventional semiconductors must be fabricated at high temperatures, making it difficult to produce the ultra-thin layers necessary to make a spin valve.

So Shi and fellow researchers set out to show that it is possible to create a spin valve made with an organic semiconductor rather than a conventional semiconductor.

Compared with conventional semiconductors, organic semiconductors are inexpensive and simpler to make, can be manufactured at lower temperatures with fewer toxic wastes, have electronic properties that can be adjusted, and are flexible so they can be molded to desired shapes. Organic semiconductors already are used as light-emitting diodes for some flat-screen TVs, cell phone displays, some billboards and a few computer display screens.

Shi, Vardeny, Xiong and Wu built three-layer organic spin valves using a middle layer made from an organic semiconductor named 8-hydroxyquinoline aluminum, or Alq3, which now is used in certain light-emitting diodes and is being developed for use in TV screens.

The organic semiconductor was sandwiched between two metallic layers: one made of cobalt and the other a compound named lanthanum strontium manganese oxide. The two metals acted as electrodes, injecting electrons with the desired spin into the middle, organic semiconductor layer. The spin valve is on a chip that measures about one-third inch square.

The physicists successfully injected electrons with aligned spins into the organic semiconductor and showed that the spins stayed aligned as the electrons moved through the semiconductor. By applying a weak magnetic field to the organic spin valve, the physicists caused a 40 percent change in the electrical current flowing through the valve. That qualifies as giant magnetoresistance.

The researchers also showed the spin-up or spin-down alignment of electrons was maintained when power was shut off – a property essential for spintronic computer memory.

More work is needed to develop organic spin valves that operate at higher temperatures, something that might be accomplished by removing impurities from the organic semiconductor. The spin valves in the study operated at temperatures ranging from minus 440 degrees Fahrenheit to minus 40 degrees Fahrenheit (minus 262 degrees Celsius to minus 40 degrees Celsius).

Nevertheless, the experiment "sets a stage for more practical applications," Shi says. "Organic semiconductors can be used for spintronic devices such as spin valves, spin light-emitting diodes and spin transistors."

Those devices can be used in computer memory chips and sensors to detect air pollution, magnetic fields, radiation or light, Vardeny says. For example, a conventional semiconductor transistor amplifies electric current and that’s about it. But an organic semiconductor can be designed so that its electron spins go from aligned to nonaligned when it is exposed to light, air pollution or radiation, changing the flow of electric current to trigger an alarm, Vardeny says.


University of Utah Public Relations
201 S Presidents Circle, Room 308
Salt Lake City, Utah 84112-9017
801-581-6773 fax: 585-3350

Lee Siegel | EurekAlert!
Further information:
http://www.utah.edu/unews

More articles from Physics and Astronomy:

nachricht Gamma rays will reach beyond the limits of light
23.10.2017 | Chalmers University of Technology

nachricht Creation of coherent states in molecules by incoherent electrons
23.10.2017 | Tata Institute of Fundamental Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>