Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Watch "Movie"Of Neutron Star Explosion In Real-Time

23.02.2004


Credit: NASA/Dana Berry


Credit: NASA/Dana Berry

Scientists at the Canadian Institute for Theoretical Astrophysics (CITA) and NASA have captured unprecedented details of the swirling flow of gas hovering just a few miles from the surface of a neutron star, itself a sphere only about ten miles across.

A massive and rare explosion on the surface of this neutron star - pouring out more energy in three hours than the Sun does in 100 years - illuminated the area and allowed the scientists to spy on details of the region never before revealed. They could see details as fine as the ring of gas swirling around and flowing onto the neutron star as this ring buckled from the explosion and then slowly recovered its original form after approximately 1,000 seconds.

All of this was occurring 25,000 light years from Earth, captured second-by-second in movie-like fashion through a process called spectroscopy with NASA’s Rossi X-ray Timing Explorer.

Dr. David Ballantyne of CITA at the University of Toronto and Dr. Tod Strohmayer of NASA’s Goddard Space Flight Center in Greenbelt, Md., present this result in an upcoming issue of Astrophysical Journal Letters. The observation provides new insight into the flow of a neutron star’s (and perhaps a black hole’s) "accretion disk," usually far too minute to resolve with even the most powerful telescopes.

"This is the first time we have been able to watch the inner regions of an accretion disk, in this case literally a few miles from the neutron star’s surface, change its structure in real-time," said Ballantyne. "Accretion disks are known to flow around many objects in the Universe, from newly forming stars to the giant black holes in distant quasars. Details of how such a disk flows could only be inferred up to now."

A neutron star is the dense, core remains of an exploded star at least eight times more massive than the Sun. The neutron star contains about a sun’s worth of mass packed in a sphere no larger than Toronto. An accretion disk refers to the flow of hot gas (plasma) swirling around neutron stars and black holes, attracted by the strong gravity of the region. This gas is often supplied by a neighboring star.

As matter crashes down on the neutron star it builds up a 10- to 100-meter layer of material comprised mostly of helium. The fusion of the helium into carbon and other heavier elements releases enormous energy and powers a strong burst of X-ray light, far more energetic than visible light. (Nuclear fusion is the same process that powers the Sun.) Such bursts can occur several times a day on a neutron star and last for about 10 seconds.

What Ballantyne and Strohmayer observed on this neutron star, named 4U 1820-30, was a "superburst". These are much more rare than ordinary, helium-powered bursts and release a thousand times more energy. Scientists say these superbursts are caused by a buildup of nuclear ash in the form of carbon from the helium fusion. Current thinking suggests that is takes several years for the carbon ash to buildup to such an extent that it begins to fuse.

The superburst was so bright and long that it acted like a spotlight beamed from the neutron star surface and onto the innermost region of the accretion disk. The X-ray light from the burst illuminated iron atoms in the accretion disk, a process called fluorescence. The Rossi Explorer captured the characteristic signature of the iron fluorescence -- that is, its spectrum. This, in turn, provided information about the iron’s temperature, velocity and location around the neutron star.

"The Rossi Explorer can get a good measurement of the fluorescence spectrum of the iron atoms every few seconds," Strohmayer said. "Adding up all this information, we get a picture of how this accretion disk is being deformed by the thermonuclear blast. This is the best look we can hope to get, because the resolution needed to actually see this action as an image, instead of spectra, would be a billion times greater than what the Hubble Space Telescope offers."

The scientists said the bursting neutron stars serve as a laboratory to study accretion disks, which are seen (but in less detail) through the Universe around nearby stellar black holes and exceedingly distant quasar galaxies. Stellar black holes with accretion disks do not produce X-ray bursts.

The Rossi Explorer was launched in December 1995 to observe fast-changing, energetic and rapidly spinning objects, such as supermassive black holes, active galactic nuclei, neutron stars and millisecond pulsars.

Nicolle Wahl | University of Toronto
Further information:
http://www.newsandevents.utoronto.ca/

More articles from Physics and Astronomy:

nachricht The moon is front and center during a total solar eclipse
24.07.2017 | NASA/Goddard Space Flight Center

nachricht Superluminous supernova marks the death of a star at cosmic high noon
24.07.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Chances to treat childhood dementia

24.07.2017 | Health and Medicine

Improved Performance thanks to Reduced Weight

24.07.2017 | Automotive Engineering

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>