Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Watch "Movie"Of Neutron Star Explosion In Real-Time

23.02.2004


Credit: NASA/Dana Berry


Credit: NASA/Dana Berry

Scientists at the Canadian Institute for Theoretical Astrophysics (CITA) and NASA have captured unprecedented details of the swirling flow of gas hovering just a few miles from the surface of a neutron star, itself a sphere only about ten miles across.

A massive and rare explosion on the surface of this neutron star - pouring out more energy in three hours than the Sun does in 100 years - illuminated the area and allowed the scientists to spy on details of the region never before revealed. They could see details as fine as the ring of gas swirling around and flowing onto the neutron star as this ring buckled from the explosion and then slowly recovered its original form after approximately 1,000 seconds.

All of this was occurring 25,000 light years from Earth, captured second-by-second in movie-like fashion through a process called spectroscopy with NASA’s Rossi X-ray Timing Explorer.

Dr. David Ballantyne of CITA at the University of Toronto and Dr. Tod Strohmayer of NASA’s Goddard Space Flight Center in Greenbelt, Md., present this result in an upcoming issue of Astrophysical Journal Letters. The observation provides new insight into the flow of a neutron star’s (and perhaps a black hole’s) "accretion disk," usually far too minute to resolve with even the most powerful telescopes.

"This is the first time we have been able to watch the inner regions of an accretion disk, in this case literally a few miles from the neutron star’s surface, change its structure in real-time," said Ballantyne. "Accretion disks are known to flow around many objects in the Universe, from newly forming stars to the giant black holes in distant quasars. Details of how such a disk flows could only be inferred up to now."

A neutron star is the dense, core remains of an exploded star at least eight times more massive than the Sun. The neutron star contains about a sun’s worth of mass packed in a sphere no larger than Toronto. An accretion disk refers to the flow of hot gas (plasma) swirling around neutron stars and black holes, attracted by the strong gravity of the region. This gas is often supplied by a neighboring star.

As matter crashes down on the neutron star it builds up a 10- to 100-meter layer of material comprised mostly of helium. The fusion of the helium into carbon and other heavier elements releases enormous energy and powers a strong burst of X-ray light, far more energetic than visible light. (Nuclear fusion is the same process that powers the Sun.) Such bursts can occur several times a day on a neutron star and last for about 10 seconds.

What Ballantyne and Strohmayer observed on this neutron star, named 4U 1820-30, was a "superburst". These are much more rare than ordinary, helium-powered bursts and release a thousand times more energy. Scientists say these superbursts are caused by a buildup of nuclear ash in the form of carbon from the helium fusion. Current thinking suggests that is takes several years for the carbon ash to buildup to such an extent that it begins to fuse.

The superburst was so bright and long that it acted like a spotlight beamed from the neutron star surface and onto the innermost region of the accretion disk. The X-ray light from the burst illuminated iron atoms in the accretion disk, a process called fluorescence. The Rossi Explorer captured the characteristic signature of the iron fluorescence -- that is, its spectrum. This, in turn, provided information about the iron’s temperature, velocity and location around the neutron star.

"The Rossi Explorer can get a good measurement of the fluorescence spectrum of the iron atoms every few seconds," Strohmayer said. "Adding up all this information, we get a picture of how this accretion disk is being deformed by the thermonuclear blast. This is the best look we can hope to get, because the resolution needed to actually see this action as an image, instead of spectra, would be a billion times greater than what the Hubble Space Telescope offers."

The scientists said the bursting neutron stars serve as a laboratory to study accretion disks, which are seen (but in less detail) through the Universe around nearby stellar black holes and exceedingly distant quasar galaxies. Stellar black holes with accretion disks do not produce X-ray bursts.

The Rossi Explorer was launched in December 1995 to observe fast-changing, energetic and rapidly spinning objects, such as supermassive black holes, active galactic nuclei, neutron stars and millisecond pulsars.

Nicolle Wahl | University of Toronto
Further information:
http://www.newsandevents.utoronto.ca/

More articles from Physics and Astronomy:

nachricht Igniting a solar flare in the corona with lower-atmosphere kindling
29.03.2017 | New Jersey Institute of Technology

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>