Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lehigh researchers hone radiation source for THz devices

23.02.2004


Potential applications in medicine, remote sensing, imaging and satellite communications



A world that consumes information in gigabytes may one day find terahertz-sized solutions for some of its most pressing problems.

While one gigabyte is equal to one billion (109) bytes of information, a terahertz (THz) is a unit of electromagnetic-wave frequency equivalent to one trillion (1012) hertz, with one hertz equaling one cycle per second.


Terahertz (THz) frequencies, ranging from 0.1 to 10 THz, have potential applications in medicine, remote sensing, imaging and satellite communications, but are nonetheless one of the most under-utilized frequency ranges. That is because the THz range lies between the microwave frequency range and the near-infrared and optical frequency ranges, in which conventional semiconductor devices are usually operated.

Yujie J. Ding, professor of electrical and computer engineering and a member of Lehigh University’s Center for Optical Technologies, is working to solve challenges that must be overcome for THz devices to become readily accessible and cost-effective.

"We need a source to generate coherent THz waves and we need detectors," says Ding, a specialist in optoelectronics, nonlinear optics and quantum electronics.

"This is very challenging because the concepts that govern infrared light and visible light don’t work with THz."

Ding hopes to develop a compact THz radiation source with wide tunability in the wavelength range of 30 to 3,000 microns (a micron is equal one one-millionth of a meter). Several methods have been advanced by other researchers, but most have shortcomings. Free-electron lasers are bulky and costly. Ultrafast lasers generate very weak THz beams with low output powers and pulse energies.

Ding and his research group, which includes four Ph.D. candidates, one M.S. candidate and two post-doctoral researchers, have developed a method of focusing two high-frequency lasers to generate tunable and coherent THz waves in the range of 58 to 3540 microns.

In the Aug. 4 issue of Applied Physics Letters, Ding described his work in an article titled "Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation (DFG) in zinc germanium phosphide ZnGeP2."

In the article, Ding reported a highest-output peak power seven orders of magnitude higher than any output power previously reported for a THz source. He also reported a tuning range of output wavelengths that was about five times wider than a range reported previously by researchers generating THz waves in ZnGeP2 using two carbon-dioxide laser lines.

Last year, Ding reported successful THz radiation using gallium-selenide crystals in an article titled "Efficient, tunable and coherent 0.18-5.27-THz source based on GaSe crystal," which was published Aug. 15, 2002, in the journal Optics Letters.

A properly tuned source emitting THz frequencies, says Ding, would be ideally suited for imaging, spectroscopy and medical diagnostics, including cancer detection and, potentially, gene therapy.

Because vibrations of DNA and RNA chains resonate in THz, Ding says, "with a proper THz radiation source, you can tune across the resonances and sense very slight changes of the atomic chain arrangement."

Cancer cells, especially melanoma tissues, also vibrate in THz, says Ding, and lend themselves to early detection by doctors equipped with THz devices.

THz devices are also promising for homeland security tasks such as detecting the presence of toxic and semitoxic gases, says Ding. When subjected to THz waves, he says, gaseous materials reveal a limited number of sharp peaks that form a distinct pattern like a fingerprint. When the same material is subjected to the much shorter visible or mid-infrared light waves, the peaks that are revealed are too congested to show an observable pattern. Ding has already performed experiments on water vapor using THz waves at Lehigh.

Ding’s next challenge is to scale down his THz radiation device, which now approaches a large shoe box in size. His ultimate goal is to fit 10 arrays, each equipped with an emitter, a detector and photonic bandgap crystals, and each measuring millimeters in size, onto one computer chip wafer of standard dimensions.

To miniaturize his THz device, Ding is using nanostructure quantum dots and including photonic bandgap crystals that act as a special waveguide by tightly focusing the THz beam on a particular detector. The result is a more sensitive detecting tool that detects the presence of a specific toxic chemical when that chemical blocks part of the THz beam. "Without the photonic bandgap crystals, the beam will diverge," says Ding.

Kurt Pfitzer | EurekAlert!
Further information:
http://www.lehigh.edu/

More articles from Physics and Astronomy:

nachricht Writing and deleting magnets with lasers
19.04.2018 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Ultrafast electron oscillation and dephasing monitored by attosecond light source
19.04.2018 | Yokohama National University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>