Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The first module of CMS superconducting magnet is leaving towards Cern

21.01.2004


A huge solenoid, which will hold the world record of stored energy



The first module of the five constituting the CMS superconducting magnet is sailing on January 21st of from Genova port to Cern. CMS (Compact Muon Solenoid) is one of the experiments that will take place at the accelerator Lhc (Large Hadron Collider), under construction at Cern in Geneva. The device will arrive after a 10-days travel. One of the most ambitious goals of CMS is to provide information about the elusive Higgs boson: the elementary particle which is associated with the mechanism giving rise to the masses of all particles. The theoretical models predicted its existence, but it has not been directly observed yet.

Cms will analyse the products of the collisions of the proton beams steered in Lhc. It will reconstruct their tracks and measure their energy. The superconducting magnet, containing the heart of Cms experiment generates a very high magnetic field, necessary to recognize the particles produced by the collisions. Indeed the tracks of the charged particles crossing a magnetic field are deflected in different ways according to their mass and charge. Therefore, observing particles tracks we can trace back to their identity. To obtain observable deflections we need a magnetic field as high as the energy of the outgoing particles. Since in Lhc particles beams with a very high energy are produced and made to collide (these particles in a very small scale reproduce the conditions of our universe in the very first instants of its birth) it is necessary to have a very high magnetic field.


The superconducting magnet is the result of an international cooperation among different research centres. The participants are in fact the Infn (National Institute for Nuclear Physics) the Cern, the Cea (Commissariat pour l’Energie Atomic), the Eth-Z (Polytechnic of Zurich), with the cooperation of Ansaldo Superconductors of Genova. The latter was entrusted with the construction of the five modules constituting the magnet and with the preparation of an area of about 1.500 square meters for their construction.

Besides producing a very high magnetic field, the magnet must have extraordinary sizes, so that it can contain the whole of the detectors necessary to carry out precise measurements. Therefore Cms has an inside diameter of 6.3 meters, a length of 12.5 meters and generates a magnetic field of 4 T (about 80.000 times stronger than the Earth’s). Once completed, the Cms superconducting magnet will boast a notable record: with its 2.6 Gigajoule of energy it will hold the world record of energy ever stored in a magnet. Another feature of this apparatus is that it must operate at a very low temperature, so that the cables, where the electric current flows, can be in a particular status named superconductor. Thanks to this characteristic, the high current necessary to generate the required magnetic field can flow trough a few wires of about a millimetre of diameter. If a superconducting material was not used, cables of so huge sizes would be needed, to preclude the construction of the entire structure.

The notable sizes of the superconducting solenoid representing the “living part” of the magnet, required a modular construction in order to allow the transportation from the fabrication site to the Cern laboratories. “A long work of engineering optimization was necessary leading us to subdivide the solenoid into five modules of length 2.5 meters and of weight 45 tonnes. The modules will be constructed and transported one by one to Cern, where the assembling will take place” says Pasquale Fabbricatore, Infn researcher in Genova. In particular Infn is responsible for the activities of design and construction of the so-called cold mass, i.e. the winding and the mechanical structures that will be cooled at – 268 centigrade degrees (4.2 kelvin degrees).

The construction of the superconducting magnet of Cms ha required the development of innovative technologies. “Since a very high current flows in the superconductor magnet, and since the produced magnetic field is so high and the device is so large, inside the solenoid high electromagnetic forces are generated causing mechanical deformation that could make it not working. In order to prevent this problem the standard solution was putting a reinforcing mechanical structure containing the solenoid. In our case this would not have been sufficient. In order to avoid also the smallest deformation, making the cables loosing superconducting properties the reinforcement has been inserted directly inside the cables: an innovative solution requiring remarkable technical skills. However, at this point it has become very difficult to wind the cable in the right way, so it has been necessary to develop a sophisticated completely automate winding system allowing us to perform the work with high geometrical precision”, concludes Pasquale Fabbricatore.

Pasquale Fabbricatore | alfa
Further information:
http://www.infn.it

More articles from Physics and Astronomy:

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

nachricht Airborne thermometer to measure Arctic temperatures
11.01.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>