Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The first module of CMS superconducting magnet is leaving towards Cern

21.01.2004


A huge solenoid, which will hold the world record of stored energy



The first module of the five constituting the CMS superconducting magnet is sailing on January 21st of from Genova port to Cern. CMS (Compact Muon Solenoid) is one of the experiments that will take place at the accelerator Lhc (Large Hadron Collider), under construction at Cern in Geneva. The device will arrive after a 10-days travel. One of the most ambitious goals of CMS is to provide information about the elusive Higgs boson: the elementary particle which is associated with the mechanism giving rise to the masses of all particles. The theoretical models predicted its existence, but it has not been directly observed yet.

Cms will analyse the products of the collisions of the proton beams steered in Lhc. It will reconstruct their tracks and measure their energy. The superconducting magnet, containing the heart of Cms experiment generates a very high magnetic field, necessary to recognize the particles produced by the collisions. Indeed the tracks of the charged particles crossing a magnetic field are deflected in different ways according to their mass and charge. Therefore, observing particles tracks we can trace back to their identity. To obtain observable deflections we need a magnetic field as high as the energy of the outgoing particles. Since in Lhc particles beams with a very high energy are produced and made to collide (these particles in a very small scale reproduce the conditions of our universe in the very first instants of its birth) it is necessary to have a very high magnetic field.


The superconducting magnet is the result of an international cooperation among different research centres. The participants are in fact the Infn (National Institute for Nuclear Physics) the Cern, the Cea (Commissariat pour l’Energie Atomic), the Eth-Z (Polytechnic of Zurich), with the cooperation of Ansaldo Superconductors of Genova. The latter was entrusted with the construction of the five modules constituting the magnet and with the preparation of an area of about 1.500 square meters for their construction.

Besides producing a very high magnetic field, the magnet must have extraordinary sizes, so that it can contain the whole of the detectors necessary to carry out precise measurements. Therefore Cms has an inside diameter of 6.3 meters, a length of 12.5 meters and generates a magnetic field of 4 T (about 80.000 times stronger than the Earth’s). Once completed, the Cms superconducting magnet will boast a notable record: with its 2.6 Gigajoule of energy it will hold the world record of energy ever stored in a magnet. Another feature of this apparatus is that it must operate at a very low temperature, so that the cables, where the electric current flows, can be in a particular status named superconductor. Thanks to this characteristic, the high current necessary to generate the required magnetic field can flow trough a few wires of about a millimetre of diameter. If a superconducting material was not used, cables of so huge sizes would be needed, to preclude the construction of the entire structure.

The notable sizes of the superconducting solenoid representing the “living part” of the magnet, required a modular construction in order to allow the transportation from the fabrication site to the Cern laboratories. “A long work of engineering optimization was necessary leading us to subdivide the solenoid into five modules of length 2.5 meters and of weight 45 tonnes. The modules will be constructed and transported one by one to Cern, where the assembling will take place” says Pasquale Fabbricatore, Infn researcher in Genova. In particular Infn is responsible for the activities of design and construction of the so-called cold mass, i.e. the winding and the mechanical structures that will be cooled at – 268 centigrade degrees (4.2 kelvin degrees).

The construction of the superconducting magnet of Cms ha required the development of innovative technologies. “Since a very high current flows in the superconductor magnet, and since the produced magnetic field is so high and the device is so large, inside the solenoid high electromagnetic forces are generated causing mechanical deformation that could make it not working. In order to prevent this problem the standard solution was putting a reinforcing mechanical structure containing the solenoid. In our case this would not have been sufficient. In order to avoid also the smallest deformation, making the cables loosing superconducting properties the reinforcement has been inserted directly inside the cables: an innovative solution requiring remarkable technical skills. However, at this point it has become very difficult to wind the cable in the right way, so it has been necessary to develop a sophisticated completely automate winding system allowing us to perform the work with high geometrical precision”, concludes Pasquale Fabbricatore.

Pasquale Fabbricatore | alfa
Further information:
http://www.infn.it

More articles from Physics and Astronomy:

nachricht New material for splitting water
19.06.2018 | American Institute of Physics

nachricht Carbon nanotube optics provide optical-based quantum cryptography and quantum computing
19.06.2018 | DOE/Los Alamos National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>