Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The first module of CMS superconducting magnet is leaving towards Cern

21.01.2004


A huge solenoid, which will hold the world record of stored energy



The first module of the five constituting the CMS superconducting magnet is sailing on January 21st of from Genova port to Cern. CMS (Compact Muon Solenoid) is one of the experiments that will take place at the accelerator Lhc (Large Hadron Collider), under construction at Cern in Geneva. The device will arrive after a 10-days travel. One of the most ambitious goals of CMS is to provide information about the elusive Higgs boson: the elementary particle which is associated with the mechanism giving rise to the masses of all particles. The theoretical models predicted its existence, but it has not been directly observed yet.

Cms will analyse the products of the collisions of the proton beams steered in Lhc. It will reconstruct their tracks and measure their energy. The superconducting magnet, containing the heart of Cms experiment generates a very high magnetic field, necessary to recognize the particles produced by the collisions. Indeed the tracks of the charged particles crossing a magnetic field are deflected in different ways according to their mass and charge. Therefore, observing particles tracks we can trace back to their identity. To obtain observable deflections we need a magnetic field as high as the energy of the outgoing particles. Since in Lhc particles beams with a very high energy are produced and made to collide (these particles in a very small scale reproduce the conditions of our universe in the very first instants of its birth) it is necessary to have a very high magnetic field.


The superconducting magnet is the result of an international cooperation among different research centres. The participants are in fact the Infn (National Institute for Nuclear Physics) the Cern, the Cea (Commissariat pour l’Energie Atomic), the Eth-Z (Polytechnic of Zurich), with the cooperation of Ansaldo Superconductors of Genova. The latter was entrusted with the construction of the five modules constituting the magnet and with the preparation of an area of about 1.500 square meters for their construction.

Besides producing a very high magnetic field, the magnet must have extraordinary sizes, so that it can contain the whole of the detectors necessary to carry out precise measurements. Therefore Cms has an inside diameter of 6.3 meters, a length of 12.5 meters and generates a magnetic field of 4 T (about 80.000 times stronger than the Earth’s). Once completed, the Cms superconducting magnet will boast a notable record: with its 2.6 Gigajoule of energy it will hold the world record of energy ever stored in a magnet. Another feature of this apparatus is that it must operate at a very low temperature, so that the cables, where the electric current flows, can be in a particular status named superconductor. Thanks to this characteristic, the high current necessary to generate the required magnetic field can flow trough a few wires of about a millimetre of diameter. If a superconducting material was not used, cables of so huge sizes would be needed, to preclude the construction of the entire structure.

The notable sizes of the superconducting solenoid representing the “living part” of the magnet, required a modular construction in order to allow the transportation from the fabrication site to the Cern laboratories. “A long work of engineering optimization was necessary leading us to subdivide the solenoid into five modules of length 2.5 meters and of weight 45 tonnes. The modules will be constructed and transported one by one to Cern, where the assembling will take place” says Pasquale Fabbricatore, Infn researcher in Genova. In particular Infn is responsible for the activities of design and construction of the so-called cold mass, i.e. the winding and the mechanical structures that will be cooled at – 268 centigrade degrees (4.2 kelvin degrees).

The construction of the superconducting magnet of Cms ha required the development of innovative technologies. “Since a very high current flows in the superconductor magnet, and since the produced magnetic field is so high and the device is so large, inside the solenoid high electromagnetic forces are generated causing mechanical deformation that could make it not working. In order to prevent this problem the standard solution was putting a reinforcing mechanical structure containing the solenoid. In our case this would not have been sufficient. In order to avoid also the smallest deformation, making the cables loosing superconducting properties the reinforcement has been inserted directly inside the cables: an innovative solution requiring remarkable technical skills. However, at this point it has become very difficult to wind the cable in the right way, so it has been necessary to develop a sophisticated completely automate winding system allowing us to perform the work with high geometrical precision”, concludes Pasquale Fabbricatore.

Pasquale Fabbricatore | alfa
Further information:
http://www.infn.it

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>