Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetars, the most magnetic stars known, more common than previously thought

07.01.2004


Observations of explosions from an ultra-powerful magnetic neutron star playing hide-and-seek with astronomers suggest that these exotic objects called magnetars — capable of stripping a credit card clean 100,000 miles away — are far more common than previously thought.



Scientists from the United States and Canada present this result today at the meeting of the American Astronomical Society in Atlanta . The work is based on observations with the European Space Agency’s XMM-Newton observatory and NASA’s Rossi X-ray Timing Explorer.

"We only know of about ten magnetars in the Milky Way galaxy," said the investigation’s leader, Dr. Peter Woods of NASA’s Marshall Space Flight Center in Huntsville , Ala. , based at the National Space Science and Technology in Huntsville . "If the antics of the magnetar we are studying now are typical, turning on and off but never getting exceptionally bright, then there very well could be hundreds more out there."


Wood’s colleagues are: Dr. Vicky Kaspi and Mr. Fotis Gavriil of McGill University in Montreal; Dr. Christopher Thompson of the Canadian Institute for Theoretical Astrophysics; Drs. Herman Marshall, Deepto Chakrabarty and Kathy Flanagan at the Massachusetts Institute of Technology; and Drs. Jeremy Heyl and Lars Hernquist at the Harvard-Smithsonian Center for Astrophysics.

The source in question is a magnetar "candidate" named 1E 2259+586 in the constellation Cassiopeia, approximately 18,000 light years from Earth. A magnetar is a special neutron star. A neutron star is a compact sphere approximately 15 kilometers (10 miles) in diameter, the core remains of a collapsed star roughly ten times more massive than the Sun. Magnetars, for reasons poorly understood, have magnetic fields a thousand times stronger than ordinary neutron stars, measuring 10 14 to 10 15 Gauss (or about a hundred-trillion refrigerator magnets; the Sun’s magnetic field is about 5 Gauss.)

Not all scientists are convinced that neutron stars can be so magnetic. As such, magnetar candidates are often referred to in the scientific literature as either Soft Gamma-ray Repeaters (SRGs) or Anomalous X-ray Pulsars (AXPs), depending on their bursting characteristics. Members of this observation team helped established the connection between SRGs and AXPs in 2002. The source 1E 2259 is sometimes called an AXP.

For all their power, magnetars are not always majestic beacons. The opportunity to study them comes when they erupt for hours to months, without warning, emitting visible light and other wavelengths before growing dim once more. Magnetar 1E 2259 suddenly began bursting in June 2002. Scientists collected data on over 80 bursts recorded within a 4-hour window. No other bursts have been detected since.

These same changes in emissions happened 12 years ago and remained a mystery until this study. "Knowing what we know now, we realize that the earlier burst activity was too dim to observe," said Woods.

The cumulative properties of the outburst in 1E 2259+586 led the team to make several conclusions: First, the star suffered some major event lasting several days with two distinct components, one on the surface of the star (perhaps a fracture in the crust) and the other beneath the surface.

According to Kaspi, "The changes in persistent emission properties suggest that the star underwent a plastic deformation of the crust that simultaneously impacted the superfluid interior and the magnetosphere." (A neutron star’s interior is thought to be a superfluid of neutrons. The magnetosphere refers to the region in which the neutron star’s magnetic field controls the behavior of the charged particles.)

The emission after the bursting was similar to that of an SGR, further blurring the distinction between these two exotic species, Kaspi said. Also, from the changes in emission, the scientists could infer previous burst active episodes from this and other magnetar candidates.

"This sort of behavior could be happening all the time in other sources like it throughout the Galaxy and we would never know it because our gamma-ray ’eyes’ are not sensitive enough," said Woods.

Thus, the non-detection of such outbursts by telescopes scanning the entire sky for X-ray and gamma-ray sources suggests that the number of magnetar candidates in our Galaxy is larger than previously thought but that they are in a prolonged dim phase. The team plans to calculate this number. Helping them will be the NASA Swift Gamma-Ray Burst Explorer, scheduled for launch in mid-2004. Swift will be about 20 times more sensitive to magnetar bursts than anything that has flown before. "If there is a big population of these objects out there, Swift should find them," Woods said.

"Magnetars are not just the most magnetic stars known but they are stars not powered by a conventional mechanism such as nuclear fusion, rotation or accretion," Kaspi said. "Magnetars represent a new way for a star to shine, which makes this a fascinating field."

ESA’s XMM-Newton was launched in December 1999. NASA helped fund mission development and supports guest observer time. The Rossi Explorer was launched in December 1995. NASA’s Goddard Space Flight Center in Greenbelt , Md. , manages the day-to-day operation of the satellite and maintains its data archive.

Peter Woods joins the National Space Science and Technology Center through the Universities Space Research Association. Fotis Gavriil is a graduate student in the Physics Department of McGill University.

Steve Roy | MSFC
Further information:
http://www1.msfc.nasa.gov/NEWSROOM/NSSTC/news/releases/2004/N04-001.html

More articles from Physics and Astronomy:

nachricht Witnessing turbulent motion in the atmosphere of a distant star
23.08.2017 | Max-Planck-Institut für Radioastronomie

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>