Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetars, the most magnetic stars known, more common than previously thought

07.01.2004


Observations of explosions from an ultra-powerful magnetic neutron star playing hide-and-seek with astronomers suggest that these exotic objects called magnetars — capable of stripping a credit card clean 100,000 miles away — are far more common than previously thought.



Scientists from the United States and Canada present this result today at the meeting of the American Astronomical Society in Atlanta . The work is based on observations with the European Space Agency’s XMM-Newton observatory and NASA’s Rossi X-ray Timing Explorer.

"We only know of about ten magnetars in the Milky Way galaxy," said the investigation’s leader, Dr. Peter Woods of NASA’s Marshall Space Flight Center in Huntsville , Ala. , based at the National Space Science and Technology in Huntsville . "If the antics of the magnetar we are studying now are typical, turning on and off but never getting exceptionally bright, then there very well could be hundreds more out there."


Wood’s colleagues are: Dr. Vicky Kaspi and Mr. Fotis Gavriil of McGill University in Montreal; Dr. Christopher Thompson of the Canadian Institute for Theoretical Astrophysics; Drs. Herman Marshall, Deepto Chakrabarty and Kathy Flanagan at the Massachusetts Institute of Technology; and Drs. Jeremy Heyl and Lars Hernquist at the Harvard-Smithsonian Center for Astrophysics.

The source in question is a magnetar "candidate" named 1E 2259+586 in the constellation Cassiopeia, approximately 18,000 light years from Earth. A magnetar is a special neutron star. A neutron star is a compact sphere approximately 15 kilometers (10 miles) in diameter, the core remains of a collapsed star roughly ten times more massive than the Sun. Magnetars, for reasons poorly understood, have magnetic fields a thousand times stronger than ordinary neutron stars, measuring 10 14 to 10 15 Gauss (or about a hundred-trillion refrigerator magnets; the Sun’s magnetic field is about 5 Gauss.)

Not all scientists are convinced that neutron stars can be so magnetic. As such, magnetar candidates are often referred to in the scientific literature as either Soft Gamma-ray Repeaters (SRGs) or Anomalous X-ray Pulsars (AXPs), depending on their bursting characteristics. Members of this observation team helped established the connection between SRGs and AXPs in 2002. The source 1E 2259 is sometimes called an AXP.

For all their power, magnetars are not always majestic beacons. The opportunity to study them comes when they erupt for hours to months, without warning, emitting visible light and other wavelengths before growing dim once more. Magnetar 1E 2259 suddenly began bursting in June 2002. Scientists collected data on over 80 bursts recorded within a 4-hour window. No other bursts have been detected since.

These same changes in emissions happened 12 years ago and remained a mystery until this study. "Knowing what we know now, we realize that the earlier burst activity was too dim to observe," said Woods.

The cumulative properties of the outburst in 1E 2259+586 led the team to make several conclusions: First, the star suffered some major event lasting several days with two distinct components, one on the surface of the star (perhaps a fracture in the crust) and the other beneath the surface.

According to Kaspi, "The changes in persistent emission properties suggest that the star underwent a plastic deformation of the crust that simultaneously impacted the superfluid interior and the magnetosphere." (A neutron star’s interior is thought to be a superfluid of neutrons. The magnetosphere refers to the region in which the neutron star’s magnetic field controls the behavior of the charged particles.)

The emission after the bursting was similar to that of an SGR, further blurring the distinction between these two exotic species, Kaspi said. Also, from the changes in emission, the scientists could infer previous burst active episodes from this and other magnetar candidates.

"This sort of behavior could be happening all the time in other sources like it throughout the Galaxy and we would never know it because our gamma-ray ’eyes’ are not sensitive enough," said Woods.

Thus, the non-detection of such outbursts by telescopes scanning the entire sky for X-ray and gamma-ray sources suggests that the number of magnetar candidates in our Galaxy is larger than previously thought but that they are in a prolonged dim phase. The team plans to calculate this number. Helping them will be the NASA Swift Gamma-Ray Burst Explorer, scheduled for launch in mid-2004. Swift will be about 20 times more sensitive to magnetar bursts than anything that has flown before. "If there is a big population of these objects out there, Swift should find them," Woods said.

"Magnetars are not just the most magnetic stars known but they are stars not powered by a conventional mechanism such as nuclear fusion, rotation or accretion," Kaspi said. "Magnetars represent a new way for a star to shine, which makes this a fascinating field."

ESA’s XMM-Newton was launched in December 1999. NASA helped fund mission development and supports guest observer time. The Rossi Explorer was launched in December 1995. NASA’s Goddard Space Flight Center in Greenbelt , Md. , manages the day-to-day operation of the satellite and maintains its data archive.

Peter Woods joins the National Space Science and Technology Center through the Universities Space Research Association. Fotis Gavriil is a graduate student in the Physics Department of McGill University.

Steve Roy | MSFC
Further information:
http://www1.msfc.nasa.gov/NEWSROOM/NSSTC/news/releases/2004/N04-001.html

More articles from Physics and Astronomy:

nachricht Igniting a solar flare in the corona with lower-atmosphere kindling
29.03.2017 | New Jersey Institute of Technology

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>