Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetars, the most magnetic stars known, more common than previously thought

07.01.2004


Observations of explosions from an ultra-powerful magnetic neutron star playing hide-and-seek with astronomers suggest that these exotic objects called magnetars — capable of stripping a credit card clean 100,000 miles away — are far more common than previously thought.



Scientists from the United States and Canada present this result today at the meeting of the American Astronomical Society in Atlanta . The work is based on observations with the European Space Agency’s XMM-Newton observatory and NASA’s Rossi X-ray Timing Explorer.

"We only know of about ten magnetars in the Milky Way galaxy," said the investigation’s leader, Dr. Peter Woods of NASA’s Marshall Space Flight Center in Huntsville , Ala. , based at the National Space Science and Technology in Huntsville . "If the antics of the magnetar we are studying now are typical, turning on and off but never getting exceptionally bright, then there very well could be hundreds more out there."


Wood’s colleagues are: Dr. Vicky Kaspi and Mr. Fotis Gavriil of McGill University in Montreal; Dr. Christopher Thompson of the Canadian Institute for Theoretical Astrophysics; Drs. Herman Marshall, Deepto Chakrabarty and Kathy Flanagan at the Massachusetts Institute of Technology; and Drs. Jeremy Heyl and Lars Hernquist at the Harvard-Smithsonian Center for Astrophysics.

The source in question is a magnetar "candidate" named 1E 2259+586 in the constellation Cassiopeia, approximately 18,000 light years from Earth. A magnetar is a special neutron star. A neutron star is a compact sphere approximately 15 kilometers (10 miles) in diameter, the core remains of a collapsed star roughly ten times more massive than the Sun. Magnetars, for reasons poorly understood, have magnetic fields a thousand times stronger than ordinary neutron stars, measuring 10 14 to 10 15 Gauss (or about a hundred-trillion refrigerator magnets; the Sun’s magnetic field is about 5 Gauss.)

Not all scientists are convinced that neutron stars can be so magnetic. As such, magnetar candidates are often referred to in the scientific literature as either Soft Gamma-ray Repeaters (SRGs) or Anomalous X-ray Pulsars (AXPs), depending on their bursting characteristics. Members of this observation team helped established the connection between SRGs and AXPs in 2002. The source 1E 2259 is sometimes called an AXP.

For all their power, magnetars are not always majestic beacons. The opportunity to study them comes when they erupt for hours to months, without warning, emitting visible light and other wavelengths before growing dim once more. Magnetar 1E 2259 suddenly began bursting in June 2002. Scientists collected data on over 80 bursts recorded within a 4-hour window. No other bursts have been detected since.

These same changes in emissions happened 12 years ago and remained a mystery until this study. "Knowing what we know now, we realize that the earlier burst activity was too dim to observe," said Woods.

The cumulative properties of the outburst in 1E 2259+586 led the team to make several conclusions: First, the star suffered some major event lasting several days with two distinct components, one on the surface of the star (perhaps a fracture in the crust) and the other beneath the surface.

According to Kaspi, "The changes in persistent emission properties suggest that the star underwent a plastic deformation of the crust that simultaneously impacted the superfluid interior and the magnetosphere." (A neutron star’s interior is thought to be a superfluid of neutrons. The magnetosphere refers to the region in which the neutron star’s magnetic field controls the behavior of the charged particles.)

The emission after the bursting was similar to that of an SGR, further blurring the distinction between these two exotic species, Kaspi said. Also, from the changes in emission, the scientists could infer previous burst active episodes from this and other magnetar candidates.

"This sort of behavior could be happening all the time in other sources like it throughout the Galaxy and we would never know it because our gamma-ray ’eyes’ are not sensitive enough," said Woods.

Thus, the non-detection of such outbursts by telescopes scanning the entire sky for X-ray and gamma-ray sources suggests that the number of magnetar candidates in our Galaxy is larger than previously thought but that they are in a prolonged dim phase. The team plans to calculate this number. Helping them will be the NASA Swift Gamma-Ray Burst Explorer, scheduled for launch in mid-2004. Swift will be about 20 times more sensitive to magnetar bursts than anything that has flown before. "If there is a big population of these objects out there, Swift should find them," Woods said.

"Magnetars are not just the most magnetic stars known but they are stars not powered by a conventional mechanism such as nuclear fusion, rotation or accretion," Kaspi said. "Magnetars represent a new way for a star to shine, which makes this a fascinating field."

ESA’s XMM-Newton was launched in December 1999. NASA helped fund mission development and supports guest observer time. The Rossi Explorer was launched in December 1995. NASA’s Goddard Space Flight Center in Greenbelt , Md. , manages the day-to-day operation of the satellite and maintains its data archive.

Peter Woods joins the National Space Science and Technology Center through the Universities Space Research Association. Fotis Gavriil is a graduate student in the Physics Department of McGill University.

Steve Roy | MSFC
Further information:
http://www1.msfc.nasa.gov/NEWSROOM/NSSTC/news/releases/2004/N04-001.html

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>