Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

50-year-old magnetic mystery solved; quantum structure obeys classical physics

07.01.2004


Ohio State University physicists and their colleagues have demonstrated for the first time a type of magnetic behavior that was predicted to exist more than 50 years ago.

The behavior involves a special kind of energy transition among atoms in a very small magnet, called chromium-8 (Cr8). And while scientists have long thought that the effect was controlled purely by quantum mechanics, the magnet’s behavior appears to reflect the laws of classical physics.

The classical laws of movement and energy are ones that people experience in daily life, and they normally only apply to objects that are large enough to be seen with the naked eye. In contrast, the molecular magnet Cr8 is so small that quantum mechanics -- the science that describes the interactions of subatomic particles -- should rule its behavior.



The finding could help bridge the gap between quantum and classical approaches for understanding these tiny structures, and aid the future development of useful devices based on nanotechnology, such as very powerful, very small computers.

“This shows that we can understand important aspects of quantum behavior with classical thinking,” said Oliver Waldmann, a visiting scientist in the Department of Physics at Ohio State. “That’s a twist that I like.”

Waldmann and his colleagues published their results in a recent issue of the journal Physical Review Letters.

Materials such as Cr8 are called molecular magnets, because they are composed of only a small number of atoms that form a large molecule. The spins of the atoms’ electrons provide the magnetism, and the molecule itself acts as separate magnet.

In the case of Cr8, the structure contains eight electrically charged chromium atoms linked in a ring that measures less than one nanometer, or billionth of a meter, across.

The spins of four of the chromium atoms are magnetized in one direction -- spin-up -- and the other four in the opposite direction -- spin-down.

The opposite spins cancel each other out, making Cr8 what’s known as an antiferromagnet. Researchers call the up-and-down spin structure a Néel structure, after the late French physicist Louis Néel, who in 1970 won the Nobel Prize for his discovery of antiferromagnetism.

In 1952, Princeton University physicist and Nobelist Philip W. Anderson predicted that when the atoms in an antiferromagnet become slightly canted out of their straight spin-up and spin-down positions, their energy transitions take on a wavelike structure.

But Anderson’s theory suggests that the magnet will generate a second kind of excitation called the Néel excitation when the electrons in its atoms are at their lowest possible energy state. This kind of Néel excitation has not been demonstrated, until now.

Waldmann performed the theoretical work that underpinned the experiment while he was at the University Erlangen-Nuremberg in Germany, and colleagues in Europe performed the experiment. Waldmann recently analyzed the data while working with Arthur J. Epstein, Distinguished University Professor of physics and chemistry at Ohio State.

To Epstein, the study demonstrates that magnets based on molecules with special internal molecular structures can produce new phenomena, such as Waldmann’s observation of the Néel excitation.

He added that using molecular magnets gives scientists the opportunity to use synthetic chemistry to tune magnetic properties, and introduce previously unknown properties into magnets.

“This enables both new fundamental science and new potential technologies,” Epstein said.

The scientists cooled a sample of Cr8 to only a few degrees Kelvin -- colder than minus 450 degrees F -- to lower the energy levels of electrons in the atoms as much as possible. Then they bombarded the material with neutrons to energize the electrons just enough for them to display Néel excitation.

The experiment was a tricky one, Waldmann said. Atoms sometimes absorb the neutrons, which would weaken signals from low-energy effects such as the Néel excitation.

The physicists chose Cr8 because the material would produce stronger signals, he said.

When Waldmann analyzed the spectrum of energy levels detected during the experiment, he saw that it matched the levels that were predicted by Anderson’s theory half a century ago.

“The pieces just fell into place,” Waldmann said. “Of course, I’d hoped for a long time that we would see the Néel excitation -- we started this project four years ago -- but when it actually happened, it was still a surprise.”

The find is more surprising still, given that the Néel excitation is a quantum mechanical effect, and the physicists could explain its properties using a classical approach.

That idea could bode well for experts who believe that quantum mechanical effects can be exploited to create a new kind of electronics.

Normal electronics encode computer data based on a binary code of ones and zeros, depending on the presence or absence of an electron within a material such as silicon. But in principle, the direction of a spinning electron -- either “spin up” or “spin down” -- can be used as data, too. And other directions of spin in-between up and down could theoretically provide further information, so a single electron could store many different pieces of data.

Such quantum computers could be much smaller than traditional electronics, and much more powerful. Instead of silicon chips, they would be built from arrays of tiny molecular structures similar to Cr8.

But working devices based on this technology could be decades away, and Waldmann said his work is only a basic step in that direction.

“Our work shows that these excitations can be understood with very basic reasoning, and this surely will help us to understand other effects that can be observed in such materials,” he said.

Co-authors on the Physical Review Letters paper include Tatiana Guidi of the Università Politecnica delle Marche in Italy; Stefano Carretta of the Università di Parma, also in Italy; Claudia Mondelli at the Institut Laue-Langevin in France; and Angela Dearden at the University of Manchester in the UK.

#

Contact: Oliver Waldmann, (614) 292-3705; Waldmann.1@osu.edu
Arthur J. Epstein, (614) 292-1133; Epstein.2@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Pam Frost Gorder | OSU
Further information:
http://researchnews.osu.edu/archive/neelwave.htm

More articles from Physics and Astronomy:

nachricht Turning entanglement upside down
22.05.2018 | Universität Innsbruck

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>