Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Wait For Beagle 2 To Call Home

26.12.2003


The fate of Beagle 2 remains uncertain this morning after the giant radio telescope at Jodrell Bank in Cheshire, UK, failed in its first attempt to detect any signal from the spacecraft.



Scientists were hopeful that the 250 ft (76 m) Lovell Telescope, recently fitted with a highly sensitive receiver, would be able to pick up the outgoing call from the Mars lander between 19.00 GMT and midnight last night. An attempt to listen out for Beagle’s call home by the Westerbork telescope array in the Netherlands was unfortunately interrupted by strong radio interference.

The next window of opportunity to communicate via Mars Odyssey will open at 17.53 GMT and close at 18.33 GMT this evening, when the orbiter is within range of the targeted landing site on Isidis Planitia.


Another communication session from Jodrell Bank is scheduled between 18.15 GMT and midnight tonight, when Mars will be visible to the radio telescope. It is also hoped that the Stanford University radio telescope in California will be able to listen for the carrier signal on 27 December.

The Beagle 2 team plans to continue using the Mars Odyssey spacecraft as a Beagle 2 communications relay for the next 10 days, after which the European Space Agency’s Mars Express orbiter will become available.

Mars Express, which was always planned to be Beagle 2’s main communication link with Earth, successfully entered orbit around the planet on 25 December and is currently being manoeuvred into its operational polar orbit.

Meanwhile, 13 more attempts to contact Mars Odyssey have been pre-programmed into Beagle 2’s computer. If there is still no contact established after that period, Beagle 2 is programmed to move into auto-transmission mode, when it will send a continuous on-off pulse signal throughout the Martian daylight hours.

The first window of opportunity to communicate with Beagle 2 took place at around 06.00 GMT yesterday, when NASA’s Mars Odyssey spacecraft flew over the planned landing site. In the absence of a signal from the 33 kg lander, the mission team contacted Jodrell Bank to put their contingency plan into operation.

At present, Beagle 2 should be sending a pulsing on-off signal once a minute (10 seconds on, 50 seconds off). Some 9 minutes later, this very slow “Morse Code” broadcast should reach Earth after a journey of some 98 million miles (157 million km).

Although the Beagle’s transmitter power is only 5 watts, little more than that of a mobile phone, scientists are confident that the signal can be detected by the state-of-the-art receiver recently installed on the Lovell Telescope. However, a significant drop in signal strength would require rigorous analysis of the data before it could be unambiguously identified.

Although the ground-based radio telescopes will not be able to send any reply, the new information provided by detection of the transmission from Beagle 2 would enable the mission team to determine a provisional location for Beagle 2. This, in turn, would allow the communications antenna on Mars Odyssey to be directed more accurately towards Beagle 2 during the orbiter’s subsequent overhead passes.

Peter Barratt | alfa
Further information:
http://www.beagle2.com
http://www.pparc.ac.uk/Mars
http://www.esa.int/mars

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>