Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New magnets with 99% air content

25.11.2003


Researchers from the Physics Department at the Universitat Autònoma de Barcelona (UAB), the Institut de Ciènca de Materials de Barcelona (ICMAB-CSIC), and the Universidad de Zaragoza have created a new ultra-light transparent magnetic material. Thanks to its properties, the new material could have interesting technological applications, such as creating new types of flat screens and magneto-optical memory devices for computers.



The researchers have obtained the new ultra-light magnets by combining silica aerogel (aerogels are extremely light solid materials, and are so porous that they’re made up of 99% air) with extremely fine magnetic particles composed of neodymium, iron and boron (Nd2Fe14B). These were orientated through a magnetic field during the synthesis. The new material retains the transparent and light properties of the aerogel, as well as the magnetic properties of the chemical composition. The magnets obtained by the researchers in the laboratory have a cylindrical shape about 1cm in diameter and several centimetres in length.

Until now, all aerogels with magnetic properties created in other laboratories were too “soft”, from a magnetic point of view, for storing information, and this closed all windows of opportunity on many technological applications. A weak external magnetic field could easily erase any information stored.


The new material created by UAB researchers firmly retains the orientation of its magnetic field, just like with a traditional magnet, making it very attractive for using in permanent magnetic memories. Because this new material allows light to travel through, its properties could simplify the design of magneto-optical memory devices, which would eventually be read by a laser beam. Furthermore, the material can be transparent or opaque according to the direction in which it is observed, making it potentially useful for creating flat screens similar to LCDs. With 99% air content, aerogel is the lightest material made to date. It is so light that some have called it “frozen fog”. Due to its extremely porous composition, it has the lowest levels of thermal, electrical and sound conductivity, making it the material with the best isolation properties.

Aerogels are produced via an extremely complex process. Firstly, a chemical solution containing water – the “gel” – is dried in special conditions in order to eliminate the water molecules and substitute them for air, so that a hugely porous solid material is obtained.

Octavi López Coronado | alfa
Further information:
http://www.uab.es

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>