Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New magnets with 99% air content

25.11.2003


Researchers from the Physics Department at the Universitat Autònoma de Barcelona (UAB), the Institut de Ciènca de Materials de Barcelona (ICMAB-CSIC), and the Universidad de Zaragoza have created a new ultra-light transparent magnetic material. Thanks to its properties, the new material could have interesting technological applications, such as creating new types of flat screens and magneto-optical memory devices for computers.



The researchers have obtained the new ultra-light magnets by combining silica aerogel (aerogels are extremely light solid materials, and are so porous that they’re made up of 99% air) with extremely fine magnetic particles composed of neodymium, iron and boron (Nd2Fe14B). These were orientated through a magnetic field during the synthesis. The new material retains the transparent and light properties of the aerogel, as well as the magnetic properties of the chemical composition. The magnets obtained by the researchers in the laboratory have a cylindrical shape about 1cm in diameter and several centimetres in length.

Until now, all aerogels with magnetic properties created in other laboratories were too “soft”, from a magnetic point of view, for storing information, and this closed all windows of opportunity on many technological applications. A weak external magnetic field could easily erase any information stored.


The new material created by UAB researchers firmly retains the orientation of its magnetic field, just like with a traditional magnet, making it very attractive for using in permanent magnetic memories. Because this new material allows light to travel through, its properties could simplify the design of magneto-optical memory devices, which would eventually be read by a laser beam. Furthermore, the material can be transparent or opaque according to the direction in which it is observed, making it potentially useful for creating flat screens similar to LCDs. With 99% air content, aerogel is the lightest material made to date. It is so light that some have called it “frozen fog”. Due to its extremely porous composition, it has the lowest levels of thermal, electrical and sound conductivity, making it the material with the best isolation properties.

Aerogels are produced via an extremely complex process. Firstly, a chemical solution containing water – the “gel” – is dried in special conditions in order to eliminate the water molecules and substitute them for air, so that a hugely porous solid material is obtained.

Octavi López Coronado | alfa
Further information:
http://www.uab.es

More articles from Physics and Astronomy:

nachricht Electrocatalysis can advance green transition
23.01.2017 | Technical University of Denmark

nachricht Quantum optical sensor for the first time tested in space – with a laser system from Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>