Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New magnets with 99% air content

25.11.2003


Researchers from the Physics Department at the Universitat Autònoma de Barcelona (UAB), the Institut de Ciènca de Materials de Barcelona (ICMAB-CSIC), and the Universidad de Zaragoza have created a new ultra-light transparent magnetic material. Thanks to its properties, the new material could have interesting technological applications, such as creating new types of flat screens and magneto-optical memory devices for computers.



The researchers have obtained the new ultra-light magnets by combining silica aerogel (aerogels are extremely light solid materials, and are so porous that they’re made up of 99% air) with extremely fine magnetic particles composed of neodymium, iron and boron (Nd2Fe14B). These were orientated through a magnetic field during the synthesis. The new material retains the transparent and light properties of the aerogel, as well as the magnetic properties of the chemical composition. The magnets obtained by the researchers in the laboratory have a cylindrical shape about 1cm in diameter and several centimetres in length.

Until now, all aerogels with magnetic properties created in other laboratories were too “soft”, from a magnetic point of view, for storing information, and this closed all windows of opportunity on many technological applications. A weak external magnetic field could easily erase any information stored.


The new material created by UAB researchers firmly retains the orientation of its magnetic field, just like with a traditional magnet, making it very attractive for using in permanent magnetic memories. Because this new material allows light to travel through, its properties could simplify the design of magneto-optical memory devices, which would eventually be read by a laser beam. Furthermore, the material can be transparent or opaque according to the direction in which it is observed, making it potentially useful for creating flat screens similar to LCDs. With 99% air content, aerogel is the lightest material made to date. It is so light that some have called it “frozen fog”. Due to its extremely porous composition, it has the lowest levels of thermal, electrical and sound conductivity, making it the material with the best isolation properties.

Aerogels are produced via an extremely complex process. Firstly, a chemical solution containing water – the “gel” – is dried in special conditions in order to eliminate the water molecules and substitute them for air, so that a hugely porous solid material is obtained.

Octavi López Coronado | alfa
Further information:
http://www.uab.es

More articles from Physics and Astronomy:

nachricht Abrupt motion sharpens x-ray pulses
28.07.2017 | Max-Planck-Institut für Kernphysik

nachricht Physicists Design Ultrafocused Pulses
27.07.2017 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

Satellite data for agriculture

28.07.2017 | Information Technology

Abrupt motion sharpens x-ray pulses

28.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>