Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light and nano: quantum mechanics vs. classical optics

17.10.2003


Rice physicists show that quantum methods can predict nanophotonic behavior



According to new research from Rice University, scientists studying the way light interacts with metallic nanostructures should throw out their old optics textbooks and bone up on their quantum mechanics instead.

The new findings, which are described in the Oct. 17 issue of the journal Science, offer a new understanding of plasmonics, an emerging field of optics aimed at the study of light at the nanometer scale -- at dimensions far smaller than a wavelength of light, smaller than today’s smallest electronic devices. Rice’s findings will make it easier for scientists and engineers to design new optical materials and devices "from the bottom up," using metal particles of specifically tailored shapes.


The field of plasmonics, which has existed for only a few years, has already attracted millions of research dollars from industry and government. One primary goal of this field is to develop new optical components and systems that are the same size as today’s smallest integrated circuits and that could ultimately be integrated with electronics on the same chip. In the field of chemical sensing, plasmonics offers the possibility of new technologies that will allow doctors, anti-terror squads and environmental experts to detect chemicals in quantities as small as a single molecule -- a prospect so intriguing the National Nanotechnology Initiative chose it as one of this past year’s primary funding objectives.

"What this work gives us is a simple, intuitive model that describes how ultrasmall metal structures of various shapes capture and manipulate light," said Naomi Halas, the Stanley C. Moore Professor of Electrical and Computer Engineering and professor of chemistry. It provides a practical design tool for nanoscale optical components."

The fact that light interacts with nanostructures at all flies in the face of traditional optics, which held for more than a century that light waves couldn’t interact with anything smaller than their own wavelengths.

Research over the past five years has turned that assumption on its head, showing that nanoscale objects can amplify and focus light in ways scientists never imagined. The "how" of this involves plasmons, ripples of waves in the ocean of electrons flowing across the surface of metallic nanostructures. The type of plasmon that exists on a surface is directly related to its geometric structure – the precise curvature of a nanoscale gold sphere or a nano-sized pore in metallic foil, for example. When light of a specific frequency strikes a plasmon that oscillates at a compatible frequency, the energy from the light is harvested by the plasmon, converted into electrical energy that propagates through the nanostructure and eventually converted back to light. Researchers at Rice, Caltech, Stanford and UCLA, as well as European teams at Imperial College, UK, and Strasbourg, France, have all reported advances in plasmonics in recent years.

Some nanostructures act as superlenses, capturing specific wavelengths of light, focusing the light to ultrasmall spots at high intensities and converting some electrical energy back into light that is reflected away. One such nanoparticle is the nanoshell, which was developed at Rice five years ago in Halas’ laboratory.

In the research described in the Science report, the Rice team show that the equations that determine the frequencies of the plasmons in complex nanoparticles are almost identical to the quantum mechanical equations that determine the energies of electrons in atoms and molecules. Their method is called "plasmon hybridization." Just as quantum mechanics allows scientists to predict the properties of complex molecules, the work performed by the Rice team shows how the properties of plasmons in complex metallic nanostructures can be predicted in a simple manner.

"What we’ve found is that plasmons in nanoparticles hybridize with each other in the same way that atomic energy levels hybridize with each other when atoms form molecules," said Peter Nordlander, the theoretical physicist who led the study. "The findings are applicable not only to nanoshells, but to nanoscale wave guides and any other nanophotonic structures."

Nordlander, a professor in both the physics and astronomy and the electrical and computer engineering departments at Rice, said the importance of the research is that it frees researchers from having to describe nanophotonic structures in terms of classical optics, something that plasmonic scientists have struggled with since the field was formed.

"Electromagnetism on the nanoscale is a messy subject. The equations are very complicated, which restricts our intuition from playing a role in the rational design of nanostructures with specific optical properties," said Nordlander. "Extensive calculations on powerful computers give you the right answer, but they don’t provide the kind of information that guides your thinking. Our approach provides a conceptual foundation for designing nano-optical components of arbitrary shape and understanding in advance what they will do to light. It is based on our intuition developed from quantum mechanics, and for us that makes things much easier."


The research was sponsored by the Army Research Office and the Robert A. Welch Foundation.

The paper, titled "A Hybridization Model for the Plasmon Response of Complex Nanostructures," was co-authored by Nordlander, Halas and doctoral graduate students Emil Prodan and Corey Radloff.

Jade Boyd | EurekAlert!
Further information:
http://chico.rice.edu/

More articles from Physics and Astronomy:

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>