Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MINOS detector ready to take first data

15.08.2003


Technicians assembled each detector plane on a strongback (foreground). The whole plane was then lifted by crane and transported to its final position. It took less than two days to assemble and erect a single plane.


Today, (August 14th), sees the start of data collection on the Main Injector Neutrino Oscillation Search (MINOS) detector, situated in the Soudan iron mine, Minnesota, USA. UK particle physicists, working within an international collaboration, will use the MINOS detector to investigate the phenomenon of neutrino mass – a puzzle that goes to the heart of our understanding of the Universe.

Neutrinos are pointlike, abundant particles with very little mass. They exist in three types or ‘flavours’ and recent experiments (including those at SNO – the Sudbury Neutrino Observatory) have demonstrated that neutrinos are capable of oscillating between these flavours (electron, tau and muon). This can only happen if one or more of the neutrino flavours does have mass, in contradiction to the Standard Model of particle physics.

The MINOS detector will start measurements of cosmic ray showers penetrating the Earth. It is situated in the Soudan Mine, Minnesota. The 30-metre-long detector consists of 486 massive octagonal planes, lined up like the slices of a loaf of bread. Each plane consists of a sheet of steel about 8 metres high and 2 ½ cm thick, covered on one side with a layer of scintillating plastic that emits light when struck by a charged particle.



“MINOS can separate neutrino interactions from their antimatter counterparts – the antineutrinos.” explains UK MINOS spokesperson, Jenny Thomas from University College London. “The data taken now from neutrinos produced in cosmic ray cascades may provide new insight into why the Universe is made of more matter than antimatter. At least, for the first time we will be able to compare the characteristics of neutrinos and anti-neutrinos coming from the atmosphere.”

However, MINOS has more ambitious plans in place for August 2004. Whilst most experiments like SNO measure neutrinos coming from the Sun, when complete, MINOS will instead study a beam of man-made neutrinos, all of the same type or ‘flavour’ – the muon neutrino flavour. This beam will be created at Fermi National Accelerator Laboratory (Fermilab) and sent straight through the Earth to Soudan – a distance of 735 kilometres. No tunnel is needed because neutrinos interact so rarely with matter. A detector is currently being built just outside Fermilab, known as the ‘near’ detector, similar but smaller than the now operational MINOS detector, known as the ‘far’ detector. The ‘near’ detector will act as a control, studying the beam as it leaves Fermilab, then the results will be compared with those from the ‘far’ detector to see if the neutrinos have oscillated into electron or tau neutrinos during their journey.

A million million neutrinos will be created at Fermilab each year, but only 1,500 will interact with the nucleus of an atom in the far detector and generate a signal; the others will pass straight through.

“The realisation that neutrinos oscillate, first demonstrated by the Super Kamiokande experiment in Japan, has been one of the biggest surprises to emerge in particle physics since the inception of the Standard Model more than 30 years ago.” says Jenny Thomas. “The MINOS experiment will measure the oscillation parameters of these neutrinos to an unprecedented accuracy of a few percent; an amazing feat considering neutrinos can usually pass directly through the Earth without interacting at all and that their inferred masses are estimated to be less than 1eV. (The weight ratio of a neutrino to a 1kg bag of sugar is the same as the ratio of a grain of sand to the weight of the earth!). The parameter measurement will open up an entire new field of particle physics, to understand what effect on the universe this tiny neutrino mass has.”

Within two years of turning on the neutrino beam, MINOS should produce an unequivocal measurement of the oscillation of muon neutrinos with none of the uncertainties associated with the atmospheric or solar neutrino source. If indeed the findings are positive, then a new era in particle physics will begin. Theorists will have to incorporate massive neutrinos into the Standard Model, which will have exciting implications. Furthermore cosmologists will have a strong candidate for the ‘missing mass’ of the Universe (which dynamical gravitational measurements show must exist). The experimental side will be just as exciting as we plan new experiments to measure precisely how the different neutrinos change their flavour.

Julia Maddock | alfa
Further information:
http://www.pparc.ac.uk/Nw/Press/MINOS.asp
http://www.fnal.gov/pub/presspass/press_releases/minosdata.html

More articles from Physics and Astronomy:

nachricht Nanotechnology for energy materials: Electrodes like leaf veins
27.09.2016 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht First quantum photonic circuit with electrically driven light source
27.09.2016 | Westfälische Wilhelms-Universität Münster

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development

28.09.2016 | Medical Engineering

Innovate coating extends the life of materials for industrial use

28.09.2016 | Materials Sciences

Blockchain Set to Transform the Financial Services Market

28.09.2016 | Business and Finance

VideoLinks
B2B-VideoLinks
More VideoLinks >>>