Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World’s largest astronomical CCD camera installed on Palomar Observatory telescope

30.07.2003


Oschin Telescope Dome


Oschin Telescope


The world’s largest astronomical camera has been installed on Palomar Observatory’s 48-inch Oschin Telescope in California. This telescope has been working to improve our understanding of the universe for nearly 55 years. The new upgrade will help it to push the limits of the unknown for years to come.

The new camera is known as QUEST (Quasar Equatorial Survey Team). Designed and built by astrophysicists at Indiana and Yale universities, QUEST recently "saw" its first starlight and is now scanning the sky.

In 2001, an electronic camera known as the Near-Earth Asteroid Tracker was installed in the Oschin Telescope. The camera, which employed a charge-coupled device (CCD) to detect light, was very successful. During its tenure on Palomar, the NEAT team discovered 189 near-Earth asteroids and 20 comets.



A charge-coupled device is a light-sensitive integrated circuit that stores and displays the data for an image in such a way that each pixel in the image is converted into an electrical charge whose intensity is related to a color in the visual spectrum. The QUEST camera has an array of 112 CCDs.

The Oschin Telescope had to undergo some major changes to accommodate the QUEST camera. Under the oversight of Richard Ellis, director of Palomar Observatory, this process was guided by Robert Thicksten and Hal Petrie of the California Institute of Technology. The delicate installation of the camera and its electronics inside the telescope was handled by Mark Gebhard (Indiana University), William Emmet (Yale University) and David Rabinowitz (Yale University). The camera’s readout electronics were constructed in the Physics and Astronomy departments at Indiana University by Gebhard and Brice Adams, under the direction of James Musser, Kent Honeycutt and Stuart Mufson. The hardware for the QUEST camera was constructed by the Yale University Physics Department under the direction of Charles Baltay.

In addition to the usual point-and-shoot mode, the new camera is designed to work in the drift scan mode. The telescope is pointed at the sky but does not move to counteract the rotation of the Earth. Instead, various objects in the sky gradually drift across the field of view at the same rate as the computer records data from the CCDs, producing photographs that are long strips of the sky. Astronomers will use these photographic slices of the sky to look for quasars, supernovae, asteroids and more.

Last year, Caltech astronomers Chad Trujillo and Mike Brown used the NEAT camera on the Oschin Telescope to find the distant world known as Quaoar. Quaoar is about half the size of Pluto, making it the biggest object to be found in our solar system since Pluto was discovered in 1930. Quaoar is the largest known member of the Kuiper Belt, a swarm of thousands of icy objects that orbit beyond Neptune. Brown is convinced there are more big Kuiper Belt objects, possibly as big as the planet Mars, and he will use QUEST to look for them.

Other scientists plan to use the camera to find objects that might be quasars. Quasars are the very bright cores of distant galaxies that are thought to contain supermassive black holes. They are among the most luminous objects in the universe. Any quasar candidates that are found with the Oschin Telescope will be looked at again with Palomar’s 200-inch Hale Telescope. Those objects that the Hale Telescope confirms to be quasars will be the targets of more detailed study with one of the 10-meter Keck Telescopes in Hawaii.

A similar approach will be used as distant galaxies are probed in a search for exploding stars known as supernovae. The QUEST camera will do the survey work, suspected supernovae will be looked at with the Hale Telescope, and supernovae of the right type will be scrutinized at one of the Keck Telescopes. Astronomers will use data from these exploding stars to try to confirm that the universe is accelerating as it expands.

Palomar Observatory, owned and operated by the California Institute of Technology and located in north San Diego County, Calif., supports the research of Caltech faculty and students, and that of researchers at Caltech’s collaborating institutions: Indiana University, Cornell University, Yale University and the Jet Propulsion Laboratory.

Contact: James Musser, at +1-812-855-9933, musser@bigbang.astro.indiana.edu
or Kent Honeycutt at +1-812-855-6916, honey@astro.indiana.edu

James Musser | Indiana University
Further information:
http://www.indiana.edu

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>