Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


World’s largest astronomical CCD camera installed on Palomar Observatory telescope


Oschin Telescope Dome

Oschin Telescope

The world’s largest astronomical camera has been installed on Palomar Observatory’s 48-inch Oschin Telescope in California. This telescope has been working to improve our understanding of the universe for nearly 55 years. The new upgrade will help it to push the limits of the unknown for years to come.

The new camera is known as QUEST (Quasar Equatorial Survey Team). Designed and built by astrophysicists at Indiana and Yale universities, QUEST recently "saw" its first starlight and is now scanning the sky.

In 2001, an electronic camera known as the Near-Earth Asteroid Tracker was installed in the Oschin Telescope. The camera, which employed a charge-coupled device (CCD) to detect light, was very successful. During its tenure on Palomar, the NEAT team discovered 189 near-Earth asteroids and 20 comets.

A charge-coupled device is a light-sensitive integrated circuit that stores and displays the data for an image in such a way that each pixel in the image is converted into an electrical charge whose intensity is related to a color in the visual spectrum. The QUEST camera has an array of 112 CCDs.

The Oschin Telescope had to undergo some major changes to accommodate the QUEST camera. Under the oversight of Richard Ellis, director of Palomar Observatory, this process was guided by Robert Thicksten and Hal Petrie of the California Institute of Technology. The delicate installation of the camera and its electronics inside the telescope was handled by Mark Gebhard (Indiana University), William Emmet (Yale University) and David Rabinowitz (Yale University). The camera’s readout electronics were constructed in the Physics and Astronomy departments at Indiana University by Gebhard and Brice Adams, under the direction of James Musser, Kent Honeycutt and Stuart Mufson. The hardware for the QUEST camera was constructed by the Yale University Physics Department under the direction of Charles Baltay.

In addition to the usual point-and-shoot mode, the new camera is designed to work in the drift scan mode. The telescope is pointed at the sky but does not move to counteract the rotation of the Earth. Instead, various objects in the sky gradually drift across the field of view at the same rate as the computer records data from the CCDs, producing photographs that are long strips of the sky. Astronomers will use these photographic slices of the sky to look for quasars, supernovae, asteroids and more.

Last year, Caltech astronomers Chad Trujillo and Mike Brown used the NEAT camera on the Oschin Telescope to find the distant world known as Quaoar. Quaoar is about half the size of Pluto, making it the biggest object to be found in our solar system since Pluto was discovered in 1930. Quaoar is the largest known member of the Kuiper Belt, a swarm of thousands of icy objects that orbit beyond Neptune. Brown is convinced there are more big Kuiper Belt objects, possibly as big as the planet Mars, and he will use QUEST to look for them.

Other scientists plan to use the camera to find objects that might be quasars. Quasars are the very bright cores of distant galaxies that are thought to contain supermassive black holes. They are among the most luminous objects in the universe. Any quasar candidates that are found with the Oschin Telescope will be looked at again with Palomar’s 200-inch Hale Telescope. Those objects that the Hale Telescope confirms to be quasars will be the targets of more detailed study with one of the 10-meter Keck Telescopes in Hawaii.

A similar approach will be used as distant galaxies are probed in a search for exploding stars known as supernovae. The QUEST camera will do the survey work, suspected supernovae will be looked at with the Hale Telescope, and supernovae of the right type will be scrutinized at one of the Keck Telescopes. Astronomers will use data from these exploding stars to try to confirm that the universe is accelerating as it expands.

Palomar Observatory, owned and operated by the California Institute of Technology and located in north San Diego County, Calif., supports the research of Caltech faculty and students, and that of researchers at Caltech’s collaborating institutions: Indiana University, Cornell University, Yale University and the Jet Propulsion Laboratory.

Contact: James Musser, at +1-812-855-9933,
or Kent Honeycutt at +1-812-855-6916,

James Musser | Indiana University
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>