Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UBC-lead team helps to identify oldest planet in universe

11.07.2003


An international research team co-led by Prof. Harvey Richer of the University of British Columbia today announced that it has confirmed the existence of the universe’s oldest known and farthest planet.



The findings end a decade of speculation and debate as to the true nature of this ancient world, which takes a century to complete each orbit. The un-named planet is 2.5 times the mass of our solar system’s largest planet, Jupiter. Its existence provides evidence that the universe’s first planets were formed rapidly, within a billion years of the Big Bang.

"This is tremendously exciting and certainly suggests that planets are probably more common that we had suspected," says Prof. Harvey Richer who announced the findings at a press conference held today at NASA headquarters in Washington, D.C.


The Jupiter-sized planet formed around a sun-like star 13 billion years ago. The ancient planet has had a remarkable life. When it was born it probably orbited its youthful sun at approximately the same distance Jupiter is from our sun. It has survived blistering ultraviolet radiation, supernova explosions and violent shockwaves.

Located near the core of an ancient star cluster 5,600 light-years away, it now orbits a pair of burned-out stars. One of the stars is observed as a pulsar by radio telescopes, but the other had not been seen until now. The research team used data from NASA’s Hubble Space Telescope to precisely measure the second star, and this let them nail down the properties of the planet as well.

The team’s research suggests that the planet is likely a gas giant, without a solid surface like the Earth. Because it was formed so early in the life of the universe it probably doesn’t have great quantities of elements such as carbon and oxygen. For these reasons, it’s unlikely the planet could support life.
Richer says that in the current model of planetary formation, planets evolve out of small collections of rocks (called planetesimals) which come together and become massive enough to gravitationally attract gas. The newly confirmed planet was formed so early in the history of the universe that its gas was still very metal-poor (and could not conceivably form rocks). This suggests that direct gravitational collapse of gas was its formation scenario so planets could have been forming continuously since the universe was very young.
Other members of the research team include Ingrid Stairs, a radio astronomer at UBC, Brad Hansen of UCLA, Steinn Sigurdsson of Penn State University, and Stephen Thorsett of UCSC.

Richer’s work is supported by two of Canada’s most prestigious granting agencies: The Natural Sciences and Engineering Research Council of Canada (NSERC) and the Canada Council.
The results of the team’s research are to be published in the journal Science on July 11. Electronic images and additional information are available at

Michelle Cook | University of British Columbia
Further information:
http://www.publicaffairs.ubc.ca/media/releases/2003/mr-03-67.html
http://hubblesite.org/news/2003/19.

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>