Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UBC-lead team helps to identify oldest planet in universe

11.07.2003


An international research team co-led by Prof. Harvey Richer of the University of British Columbia today announced that it has confirmed the existence of the universe’s oldest known and farthest planet.



The findings end a decade of speculation and debate as to the true nature of this ancient world, which takes a century to complete each orbit. The un-named planet is 2.5 times the mass of our solar system’s largest planet, Jupiter. Its existence provides evidence that the universe’s first planets were formed rapidly, within a billion years of the Big Bang.

"This is tremendously exciting and certainly suggests that planets are probably more common that we had suspected," says Prof. Harvey Richer who announced the findings at a press conference held today at NASA headquarters in Washington, D.C.


The Jupiter-sized planet formed around a sun-like star 13 billion years ago. The ancient planet has had a remarkable life. When it was born it probably orbited its youthful sun at approximately the same distance Jupiter is from our sun. It has survived blistering ultraviolet radiation, supernova explosions and violent shockwaves.

Located near the core of an ancient star cluster 5,600 light-years away, it now orbits a pair of burned-out stars. One of the stars is observed as a pulsar by radio telescopes, but the other had not been seen until now. The research team used data from NASA’s Hubble Space Telescope to precisely measure the second star, and this let them nail down the properties of the planet as well.

The team’s research suggests that the planet is likely a gas giant, without a solid surface like the Earth. Because it was formed so early in the life of the universe it probably doesn’t have great quantities of elements such as carbon and oxygen. For these reasons, it’s unlikely the planet could support life.
Richer says that in the current model of planetary formation, planets evolve out of small collections of rocks (called planetesimals) which come together and become massive enough to gravitationally attract gas. The newly confirmed planet was formed so early in the history of the universe that its gas was still very metal-poor (and could not conceivably form rocks). This suggests that direct gravitational collapse of gas was its formation scenario so planets could have been forming continuously since the universe was very young.
Other members of the research team include Ingrid Stairs, a radio astronomer at UBC, Brad Hansen of UCLA, Steinn Sigurdsson of Penn State University, and Stephen Thorsett of UCSC.

Richer’s work is supported by two of Canada’s most prestigious granting agencies: The Natural Sciences and Engineering Research Council of Canada (NSERC) and the Canada Council.
The results of the team’s research are to be published in the journal Science on July 11. Electronic images and additional information are available at

Michelle Cook | University of British Columbia
Further information:
http://www.publicaffairs.ubc.ca/media/releases/2003/mr-03-67.html
http://hubblesite.org/news/2003/19.

More articles from Physics and Astronomy:

nachricht When helium behaves like a black hole
22.03.2017 | University of Vermont

nachricht Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars
22.03.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>