Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UBC-lead team helps to identify oldest planet in universe


An international research team co-led by Prof. Harvey Richer of the University of British Columbia today announced that it has confirmed the existence of the universe’s oldest known and farthest planet.

The findings end a decade of speculation and debate as to the true nature of this ancient world, which takes a century to complete each orbit. The un-named planet is 2.5 times the mass of our solar system’s largest planet, Jupiter. Its existence provides evidence that the universe’s first planets were formed rapidly, within a billion years of the Big Bang.

"This is tremendously exciting and certainly suggests that planets are probably more common that we had suspected," says Prof. Harvey Richer who announced the findings at a press conference held today at NASA headquarters in Washington, D.C.

The Jupiter-sized planet formed around a sun-like star 13 billion years ago. The ancient planet has had a remarkable life. When it was born it probably orbited its youthful sun at approximately the same distance Jupiter is from our sun. It has survived blistering ultraviolet radiation, supernova explosions and violent shockwaves.

Located near the core of an ancient star cluster 5,600 light-years away, it now orbits a pair of burned-out stars. One of the stars is observed as a pulsar by radio telescopes, but the other had not been seen until now. The research team used data from NASA’s Hubble Space Telescope to precisely measure the second star, and this let them nail down the properties of the planet as well.

The team’s research suggests that the planet is likely a gas giant, without a solid surface like the Earth. Because it was formed so early in the life of the universe it probably doesn’t have great quantities of elements such as carbon and oxygen. For these reasons, it’s unlikely the planet could support life.
Richer says that in the current model of planetary formation, planets evolve out of small collections of rocks (called planetesimals) which come together and become massive enough to gravitationally attract gas. The newly confirmed planet was formed so early in the history of the universe that its gas was still very metal-poor (and could not conceivably form rocks). This suggests that direct gravitational collapse of gas was its formation scenario so planets could have been forming continuously since the universe was very young.
Other members of the research team include Ingrid Stairs, a radio astronomer at UBC, Brad Hansen of UCLA, Steinn Sigurdsson of Penn State University, and Stephen Thorsett of UCSC.

Richer’s work is supported by two of Canada’s most prestigious granting agencies: The Natural Sciences and Engineering Research Council of Canada (NSERC) and the Canada Council.
The results of the team’s research are to be published in the journal Science on July 11. Electronic images and additional information are available at

Michelle Cook | University of British Columbia
Further information:

More articles from Physics and Astronomy:

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>